Source code for pyrad.proc.process_phase

"""
pyrad.proc.process_phase
======================================

Functions for PhiDP and KDP processing and attenuation correction

.. autosummary::
    :toctree: generated/

    process_correct_phidp0
    process_smooth_phidp_single_window
    process_smooth_phidp_double_window
    process_kdp_leastsquare_single_window
    process_kdp_leastsquare_double_window
    process_phidp_kdp_Vulpiani
    process_phidp_kdp_Kalman
    process_phidp_kdp_Maesaka
    process_phidp_kdp_lp
    process_selfconsistency_kdp_phidp
    process_selfconsistency_bias
    process_attenuation

"""

import warnings

from copy import deepcopy
from warnings import warn

import numpy as np

import pyart

from ..io.io_aux import get_datatype_fields
from ..io.read_data_sensor import read_fzl_igra

# Ignore warning in process_phidp_kdp_Maesaka
warnings.filterwarnings(
    "ignore",
    message=".*'partition' will ignore the 'mask' of the MaskedArray.*",
    category=UserWarning,
)


[docs] def process_correct_phidp0(procstatus, dscfg, radar_list=None): """ corrects phidp of the system phase Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "dBZ" or "dBZc", and, "PhiDP" or "PhiDPc" or "uPhiDP" rmin : float. Dataset keyword The minimum range where to look for valid data [m]. Default 1000. rmax : float. Dataset keyword The maximum range where to look for valid data [m]. Default 50000. rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m]. Default 1000. Zmin : float. Dataset keyword The minimum reflectivity [dBZ]. Default 20. Zmax : float. Dataset keyword The maximum reflectivity [dBZ]. Default 40. radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "PhiDPc" ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "dBZ": refl_field = "reflectivity" if datatype == "dBZc": refl_field = "corrected_reflectivity" if datatype == "PhiDP": psidp_field = "differential_phase" if datatype == "PhiDPc": psidp_field = "corrected_differential_phase" if datatype == "uPhiDP": psidp_field = "uncorrected_differential_phase" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn("Unable to correct PhiDP system offset. Missing data") return None, None # user defined parameters rmin = dscfg.get("rmin", 1000.0) rmax = dscfg.get("rmax", 50000.0) rcell = dscfg.get("rcell", 1000.0) zmin = dscfg.get("Zmin", 20.0) zmax = dscfg.get("Zmax", 40.0) ind_rmin = np.where(radar.range["data"] > rmin)[0][0] ind_rmax = np.where(radar.range["data"] < rmax)[0][-1] r_res = radar.range["data"][1] - radar.range["data"][0] min_rcons = int(rcell / r_res) if psidp_field.startswith("corrected_"): phidp_field = psidp_field elif psidp_field.startswith("uncorrected_"): phidp_field = psidp_field.replace("uncorrected_", "corrected_", 1) else: phidp_field = "corrected_" + psidp_field try: phidp = pyart.correct.correct_sys_phase( radar, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=zmin, zmax=zmax, psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field, ) except AttributeError: warn("Could not find correct_sys_phase function...") warn("Skipping system phase correction...") warn("Please use PyART-MCH to get this functionality") phidp = radar.fields[phidp_field] # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(phidp_field, phidp) return new_dataset, ind_rad
[docs] def process_smooth_phidp_single_window(procstatus, dscfg, radar_list=None): """ corrects phidp of the system phase and smoothes it using one window Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "dBZ" or "dBZc", and, "PhiDP" or "PhiDPc" or "uPhiDP" rmin : float. Dataset keyword The minimum range where to look for valid data [m]. Default 1000. rmax : float. Dataset keyword The maximum range where to look for valid data [m]. Default 50000. rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m]. Default 1000. rwind : float. Dataset keyword The length of the smoothing window [m]. Default 6000. Zmin : float. Dataset keyword The minimum reflectivity [dBZ]. Default 20. Zmax : float. Dataset keyword The maximum reflectivity [dBZ]. Default 40. radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "PhiDPc" ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "dBZ": refl_field = "reflectivity" if datatype == "dBZc": refl_field = "corrected_reflectivity" if datatype == "PhiDP": psidp_field = "differential_phase" if datatype == "PhiDPc": psidp_field = "corrected_differential_phase" if datatype == "uPhiDP": psidp_field = "uncorrected_differential_phase" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn("Unable to smooth PhiDP. Missing data") return None, None # user defined parameters rmin = dscfg.get("rmin", 1000.0) rmax = dscfg.get("rmax", 50000.0) rcell = dscfg.get("rcell", 1000.0) zmin = dscfg.get("Zmin", 20.0) zmax = dscfg.get("Zmax", 40.0) rwind = dscfg.get("rwind", 6000.0) ind_rmin = np.where(radar.range["data"] > rmin)[0][0] ind_rmax = np.where(radar.range["data"] < rmax)[0][-1] r_res = radar.range["data"][1] - radar.range["data"][0] min_rcons = int(rcell / r_res) wind_len = int(rwind / r_res) min_valid = int(wind_len / 2 + 1) if psidp_field.startswith("corrected_"): phidp_field = psidp_field elif psidp_field.startswith("uncorrected_"): phidp_field = psidp_field.replace("uncorrected_", "corrected_", 1) else: phidp_field = "corrected_" + psidp_field phidp = pyart.correct.smooth_phidp_single_window( radar, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=zmin, zmax=zmax, wind_len=wind_len, min_valid=min_valid, psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field, ) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(phidp_field, phidp) return new_dataset, ind_rad
[docs] def process_smooth_phidp_double_window(procstatus, dscfg, radar_list=None): """ corrects phidp of the system phase and smoothes it using one window Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "dBZ" or "dBZc", and, "PhiDP" or "PhiDPc" or "uPhiDP" rmin : float. Dataset keyword The minimum range where to look for valid data [m] rmax : float. Dataset keyword The maximum range where to look for valid data [m] rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m] rwinds : float. Dataset keyword The length of the short smoothing window [m] rwindl : float. Dataset keyword The length of the long smoothing window [m] Zmin : float. Dataset keyword The minimum reflectivity [dBZ] Zmax : float. Dataset keyword The maximum reflectivity [dBZ] Zthr : float. Dataset keyword The threshold defining wich smoothed data to used [dBZ] radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "PhiDPc" ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "dBZ": refl_field = "reflectivity" if datatype == "dBZc": refl_field = "corrected_reflectivity" if datatype == "PhiDP": psidp_field = "differential_phase" if datatype == "PhiDPc": psidp_field = "corrected_differential_phase" if datatype == "uPhiDP": psidp_field = "uncorrected_differential_phase" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn("Unable to smooth PhiDP. Missing data") return None, None # user defined parameters rmin = dscfg.get("rmin", 1000.0) rmax = dscfg.get("rmax", 50000.0) rcell = dscfg.get("rcell", 1000.0) zmin = dscfg.get("Zmin", 20.0) zmax = dscfg.get("Zmax", 40.0) rwinds = dscfg.get("rwinds", 2000.0) rwindl = dscfg.get("rwindl", 6000.0) zthr = dscfg.get("Zthr", 40.0) ind_rmin = np.where(radar.range["data"] > rmin)[0][0] ind_rmax = np.where(radar.range["data"] < rmax)[0][-1] r_res = radar.range["data"][1] - radar.range["data"][0] min_rcons = int(rcell / r_res) swind_len = int(rwinds / r_res) smin_valid = int(swind_len / 2 + 1) lwind_len = int(rwindl / r_res) lmin_valid = int(lwind_len / 2 + 1) if psidp_field.startswith("corrected_"): phidp_field = psidp_field elif psidp_field.startswith("uncorrected_"): phidp_field = psidp_field.replace("uncorrected_", "corrected_", 1) else: phidp_field = "corrected_" + psidp_field phidp = pyart.correct.smooth_phidp_double_window( radar, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=zmin, zmax=zmax, swind_len=swind_len, smin_valid=smin_valid, lwind_len=lwind_len, lmin_valid=lmin_valid, zthr=zthr, psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field, ) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(phidp_field, phidp) return new_dataset, ind_rad
[docs] def process_phidp_kdp_Maesaka(procstatus, dscfg, radar_list=None): """ Estimates PhiDP and KDP using the method by Maesaka. This method only retrieves data in rain (i.e. below the melting layer) Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "dBZ" or "dBZc", and, "PhiDP" or "PhiDPc" or "uPhiDP", and "TEMP" or "H_ISO0" (Optional) rmin : float. Dataset keyword The minimum range where to look for valid data [m]. Default 1000. rmax : float. Dataset keyword The maximum range where to look for valid data [m]. Default 50000. rcell : float. Dataset keyword The length of a continuous cell to consider it valid precip [m]. Default 1000. Zmin : float. Dataset keyword The minimum reflectivity [dBZ]. Default 20 Zmax : float. Dataset keyword The maximum reflectivity [dBZ]. Default 40 fzl : float. Dataset keyword The freezing level height [m]. Default 2000. sounding : str. Dataset keyword The nearest radiosounding WMO code (5 int digits). It will be used to compute the freezing level, if no temperature field name is specified, if the temperature field isin the radar object or if no freezing_level is explicitely defined. ml_thickness : float. Dataset keyword The melting layer thickness in meters. Default 700. beamwidth : float. Dataset keyword the antenna beamwidth [deg]. If None that of the keys radar_beam_width_h or radar_beam_width_v in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present the beamwidth will be set to None radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "PhiDPc" and "KDPc" ind_rad : int radar index """ if procstatus != 1: return None, None temp_field = None iso0_field = None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "PhiDP": psidp_field = "differential_phase" if datatype == "PhiDPc": psidp_field = "corrected_differential_phase" if datatype == "uPhiDP": psidp_field = "uncorrected_differential_phase" if datatype == "dBZ": refl_field = "reflectivity" if datatype == "dBZc": refl_field = "corrected_reflectivity" if datatype == "TEMP": temp_field = "temperature" if datatype == "H_ISO0": iso0_field = "height_over_iso0" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn( "Unable to retrieve PhiDP KDP using the Maesaka approach. " + "Missing data" ) return None, None # user defined parameters rmin = dscfg.get("rmin", 1000.0) rmax = dscfg.get("rmax", 50000.0) rcell = dscfg.get("rcell", 1000.0) zmin = dscfg.get("Zmin", 20.0) zmax = dscfg.get("Zmax", 40.0) thickness = dscfg.get("ml_thickness", 700.0) fzl = None temp_ref = "fixed_fzl" # determine which freezing level reference if temp_field is not None: if temp_field in radar.fields: temp_ref = "temperature" else: warn( "COSMO temperature field not available. " + "Using fixed freezing level height to determine liquid phase" ) elif iso0_field is not None: if iso0_field in radar.fields: temp_ref = "height_over_iso0" else: warn( "Height over iso0 field not available. " + "Using fixed freezing level height to determine liquid phase" ) else: # determine freezing level height if necessary temp_ref = "fixed_fzl" if "fzl" in dscfg: fzl = dscfg["fzl"] elif "sounding" in dscfg: sounding_code = dscfg["sounding"] t0 = pyart.util.datetime_utils.datetime_from_radar(radar) fzl = read_fzl_igra(sounding_code, t0, dscfg=dscfg) else: warn("Freezing level height not defined. Using default " + str(fzl) + " m") fzl = 2000 phidp_field = "corrected_differential_phase" kdp_field = "corrected_specific_differential_phase" radar_aux = deepcopy(radar) # correct PhiDP0 ind_rmin = np.where(radar_aux.range["data"] > rmin)[0][0] ind_rmax = np.where(radar_aux.range["data"] < rmax)[0][-1] r_res = radar_aux.range["data"][1] - radar_aux.range["data"][0] min_rcons = int(rcell / r_res) try: phidp = pyart.correct.correct_sys_phase( radar_aux, ind_rmin=ind_rmin, ind_rmax=ind_rmax, min_rcons=min_rcons, zmin=zmin, zmax=zmax, psidp_field=psidp_field, refl_field=refl_field, phidp_field=phidp_field, ) except AttributeError: warn("Could not find correct_sys_phase function...") warn("Skipping system phase correction...") warn("Please use PyART-MCH to get this functionality") phidp = radar_aux.fields[phidp_field] # filter out data in an above the melting layer mask = np.ma.getmaskarray(phidp["data"]) beamwidth = dscfg.get("beamwidth", None) if beamwidth is None: if radar.instrument_parameters is not None: if "radar_beam_width_h" in radar.instrument_parameters: beamwidth = radar.instrument_parameters["radar_beam_width_h"]["data"][0] elif "radar_beam_width_v" in radar.instrument_parameters: beamwidth = radar.instrument_parameters["radar_beam_width_v"]["data"][0] if beamwidth is None: warn("Antenna beam width unknown.") try: mask_fzl, _ = pyart.correct.get_mask_fzl( radar_aux, fzl=fzl, doc=15, min_temp=0.0, max_h_iso0=0.0, thickness=thickness, beamwidth=beamwidth, temp_field=temp_field, iso0_field=iso0_field, temp_ref=temp_ref, ) mask = np.logical_or(mask, mask_fzl) except AttributeError: warn("Masking above FZL is only available in PyART-MCH") warn("Please use this library instead of ARM's version") # filter out data with invalid reflectivity mask_refl = np.ma.getmaskarray(radar_aux.fields[refl_field]["data"]) mask = np.logical_or(mask, mask_refl) phidp["data"] = np.ma.masked_where(mask, phidp["data"]) fill_value = pyart.config.get_fillvalue() radar_aux.add_field(phidp_field, phidp, replace_existing=True) # the return data is not a masked array kdp, phidpf, _ = pyart.retrieve.kdp_proc.kdp_maesaka( radar_aux, gatefilter=None, method="cg", backscatter=None, Clpf=1.0, length_scale=None, first_guess=0.01, finite_order="low", fill_value=fill_value, psidp_field=phidp_field, kdp_field=kdp_field, phidp_field=phidp_field, ) kdp["data"] = np.ma.masked_where(mask, kdp["data"]) phidpf["data"] = np.ma.masked_where(mask, phidpf["data"]) # prepare for exit new_dataset = {"radar_out": deepcopy(radar_aux)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(phidp_field, phidpf) new_dataset["radar_out"].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs] def process_phidp_kdp_lp(procstatus, dscfg, radar_list=None): """ Estimates PhiDP and KDP using a linear programming algorithm. This method only retrieves data in rain (i.e. below the melting layer). The method has 3 steps: PhiDP unfolding (including clutter suppression), Processing PhiDP using the LP algorithm, Obtaining KDP by convoluting PhiDP with a Sobel window. Required inputs for the LP algorithm are PsiDP and reflectivity. RhoHV and SNR are used for the clutter suppression in the PhiDP unfolding step (note that SNR is used instead of Normalized Coherent Power used by the original algorithm). If they are not provided a gate_filter based on the values of reflectivity is used instead. Freezing level height can be retrieved from iso-0 or temperature fields, from radio sounding or set by the user. Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "dBZ" or "dBZc", and, "PhiDP" or "PhiDPc" or "uPhiDP", and, "RhoHV" or "RhoHVc", (Optional, used when min_rhv is specified) and, "SNRh" (Optional, used when min_snr is specified), and "TEMP" or "H_ISO0" (Optional) fzl : float. Dataset keyword The freezing level height [m]. Default 2000. sounding : str. Dataset keyword The nearest radiosounding WMO code (5 int digits). It will be used to compute the freezing level, if no temperature field name is specified, if the temperature field is not in the radar object or if no freezing_level is explicitely defined. ml_thickness : float. Dataset keyword The melting layer thickness in meters. Default 700. beamwidth : float. Dataset keyword the antenna beamwidth [deg]. If None that of the keys radar_beam_width_h or radar_beam_width_v in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present the beamwidth will be set to None LP_solver : str. The LP solver to use. Can be pyglpk, cvxopt, cylp, cylp_mp. Default cvxopt proc : int Number of worker processes. Only used when LP_solver is cylp_mp. Default 1 min_snr, min_rhv : float Minimum SNR and RhoHV. Used to filter out non-meteorological echoes when performing the unfolding of the differential phase. Default 10 and 0.6 sys_phase : float Default system differential phase offset in deg. Default 0. overide_sys_phase : bool If True the dynamic sys_phase not computed and the default sys_phase is used. If false a dynamic sys_phase is computed. If no dynamic value is found the default sys_phase is used. Default False first_gate_sysp : int First gate to use when determining the system differential phase offset. Default 0 nowrap : int or None Gate number where to begin the phase unwrapping. None will unwrap from gate 0. Default None ncpts : int Minimum number of continuous valid PhiDP points. Segments below this number or starting at a gate below this number are going to be excluded from the unfolding. Default 2. z_bias : float reflectivity bias. Default 0 dBZ low_z, high_z : float mininum and maximum reflectivity values. Values beyond this range are going to be set to this range limits. The modified reflectivity is used in the LP algorithm. Default 10 and 53 dBZ min_phidp : float minimum differential phase. PhiDP values below this threshold are going to be set to the threshold values. The modified PhiDP is used in the LP algorithm. Default 0.1 deg doc : int Number of gates to doc at the end of the ray. Used in the LP algorithm. Default 0 self_const : float selfconsistency factor. Used in the LP algorithm. Default 60000 coef : float Exponent linking Z to KDP in selfconsistency. Used in the LP algorithm. kdp = (10**(0.1z))**coef. Default 0.914 window_len : int Length of Sobel Window applied to PhiDP field before computing KDP. Default 35 radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "PhiDPc" and "KDPc" ind_rad : int radar index """ if procstatus != 1: return None, None temp_field = None iso0_field = None rhv_field = None snr_field = None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "PhiDP": psidp_field = "differential_phase" if datatype == "PhiDPc": psidp_field = "corrected_differential_phase" if datatype == "uPhiDP": psidp_field = "uncorrected_differential_phase" if datatype == "dBZ": refl_field = "reflectivity" if datatype == "dBZc": refl_field = "corrected_reflectivity" if datatype == "RhoHVc": rhv_field = "corrected_cross_correlation_ratio" if datatype == "RhoHV": rhv_field = "cross_correlation_ratio" if datatype == "SNRh": snr_field = "signal_to_noise_ratio_hh" if datatype == "TEMP": temp_field = "temperature" if datatype == "H_ISO0": iso0_field = "height_over_iso0" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if (refl_field not in radar.fields) or (psidp_field not in radar.fields): warn( "Unable to retrieve PhiDP and KDP using the LP approach. " + "Missing reflectivity and/or PsiDP data" ) return None, None fzl = None temp_ref = "fixed_fzl" # determine which freezing level reference if temp_field is not None: if temp_field in radar.fields: temp_ref = "temperature" else: warn( "COSMO temperature field not available. " + "Using fixed freezing level height to determine liquid phase" ) elif iso0_field is not None: if iso0_field in radar.fields: temp_ref = "height_over_iso0" else: warn( "Height over iso0 field not available. " + "Using fixed freezing level height to determine liquid phase" ) else: # determine freezing level height if necessary temp_ref = "fixed_fzl" if "fzl" in dscfg: fzl = dscfg["fzl"] elif "sounding" in dscfg: sounding_code = dscfg["sounding"] t0 = pyart.util.datetime_utils.datetime_from_radar(radar) fzl = read_fzl_igra(sounding_code, t0, dscfg=dscfg) else: fzl = 2000 warn("Freezing level height not defined. Using default " + str(fzl) + " m") radar_aux = deepcopy(radar) # user config LP_solver = dscfg.get("LP_solver", "cvxopt") thickness = dscfg.get("ml_thickness", 700.0) offset = -dscfg.get("z_bias", 0.0) self_const = dscfg.get("self_const", 60000.0) low_z = dscfg.get("low_z", 10.0) high_z = dscfg.get("high_z", 53.0) min_phidp = dscfg.get("min_phidp", 0.01) min_ncp = dscfg.get("min_snr", 10.0) min_rhv = dscfg.get("min_rhv", 0.6) sys_phase = dscfg.get("sys_phase", 0.0) first_gate_sysp = dscfg.get("first_gate_sysp", 0) ncpts = dscfg.get("ncpts", 2) overide_sys_phase = dscfg.get("overide_sys_phase", False) nowrap = dscfg.get("nowrap", None) window_len = dscfg.get("window_len", 35) proc = dscfg.get("proc", 1) coef = dscfg.get("coef", 0.914) doc = dscfg.get("doc", 0) # filter out data in an above the melting layer mask = np.ma.getmaskarray(radar_aux.fields[psidp_field]["data"]) beamwidth = dscfg.get("beamwidth", None) if beamwidth is None: if radar.instrument_parameters is not None: if "radar_beam_width_h" in radar.instrument_parameters: beamwidth = radar.instrument_parameters["radar_beam_width_h"]["data"][0] elif "radar_beam_width_v" in radar.instrument_parameters: beamwidth = radar.instrument_parameters["radar_beam_width_v"]["data"][0] if beamwidth is None: warn("Antenna beam width unknown.") mask_fzl, _ = pyart.correct.get_mask_fzl( radar_aux, fzl=fzl, doc=15, min_temp=0.0, max_h_iso0=0.0, thickness=thickness, beamwidth=beamwidth, temp_field=temp_field, iso0_field=iso0_field, temp_ref=temp_ref, ) mask = np.logical_or(mask, mask_fzl) # filter out data with invalid reflectivity mask_refl = np.ma.getmaskarray(radar_aux.fields[refl_field]["data"]) mask = np.logical_or(mask, mask_refl) radar_aux.fields[psidp_field]["data"] = np.ma.masked_where( mask, radar_aux.fields[psidp_field]["data"] ) phidp_field = "corrected_differential_phase" kdp_field = "corrected_specific_differential_phase" # fzl is None meaning temperature fields could be used: # set fzl to an arbitrary high value if fzl is None: fzl = 5000.0 if rhv_field is not None and snr_field is not None: phidp, kdp = pyart.correct.phase_proc_lp( radar_aux, offset, debug=False, self_const=self_const, low_z=low_z, high_z=high_z, min_phidp=min_phidp, min_ncp=min_ncp, min_rhv=min_rhv, fzl=fzl, sys_phase=sys_phase, ncpts=ncpts, overide_sys_phase=overide_sys_phase, nowrap=nowrap, really_verbose=False, LP_solver=LP_solver, refl_field=refl_field, ncp_field=snr_field, rhv_field=rhv_field, phidp_field=psidp_field, kdp_field=kdp_field, unf_field=phidp_field, window_len=window_len, proc=proc, coef=coef, ) else: if not overide_sys_phase: sys_phase = None gatefilter = pyart.filters.GateFilter(radar_aux) gatefilter.exclude_masked(psidp_field) phidp, kdp = pyart.correct.phase_proc_lp_gf( radar_aux, offset=offset, gatefilter=gatefilter, debug=False, self_const=self_const, low_z=low_z, high_z=high_z, min_phidp=min_phidp, fzl=fzl, system_phase=sys_phase, ncpts=ncpts, first_gate_sysp=first_gate_sysp, nowrap=nowrap, really_verbose=False, LP_solver=LP_solver, refl_field=refl_field, phidp_field=psidp_field, kdp_field=kdp_field, unf_field=phidp_field, window_len=window_len, proc=proc, coef=coef, doc=doc, ) kdp["data"] = np.ma.masked_where(mask, kdp["data"]) phidp["data"] = np.ma.masked_where(mask, phidp["data"]) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(phidp_field, phidp) new_dataset["radar_out"].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs] def process_kdp_leastsquare_single_window(procstatus, dscfg, radar_list=None): """ Computes specific differential phase using a piecewise least square method Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "PhiDP" or "PhiDPc" or "uPhiDP" rwind : float. Dataset keyword The length of the segment for the least square method [m]. Default 6000. vectorize : bool. Dataset keyword Whether to vectorize the KDP processing. Default false radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "KDPc" ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "PhiDP": phidp_field = "differential_phase" if datatype == "PhiDPc": phidp_field = "corrected_differential_phase" if datatype == "uPhiDP": phidp_field = "uncorrected_differential_phase" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if phidp_field not in radar.fields: warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data") return None, None # user defined parameters rwind = dscfg.get("rwind", 6000.0) vectorize = dscfg.get("vectorize", False) r_res = radar.range["data"][1] - radar.range["data"][0] wind_len = int(rwind / r_res) min_valid = int(wind_len / 2 + 1) kdp_field = "corrected_specific_differential_phase" kdp = pyart.retrieve.kdp_leastsquare_single_window( radar, wind_len=wind_len, min_valid=min_valid, phidp_field=phidp_field, kdp_field=kdp_field, vectorize=vectorize, ) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs] def process_kdp_leastsquare_double_window(procstatus, dscfg, radar_list=None): """ Computes specific differential phase using a piecewise least square method Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: The input data types, must contain, "PhiDP" or "PhiDPc" or "uPhiDP", and, "dBZ" or "dBZc" rwinds : float. Dataset keyword The length of the short segment for the least square method [m]. Default 2000. rwindl : float. Dataset keyword The length of the long segment for the least square method [m]. Default 6000. Zthr : float. Dataset keyword The threshold defining which estimated data to use [dBZ] vectorize : Bool. Dataset keyword Whether to vectorize the KDP processing. Default false radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "KDPc" ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "PhiDP": phidp_field = "differential_phase" if datatype == "PhiDPc": phidp_field = "corrected_differential_phase" if datatype == "uPhiDP": phidp_field = "uncorrected_differential_phase" if datatype == "dBZ": refl_field = "reflectivity" if datatype == "dBZc": refl_field = "corrected_reflectivity" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if (phidp_field not in radar.fields) or (refl_field not in radar.fields): warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data") return None, None # user defined parameters rwinds = dscfg.get("rwinds", 2000.0) rwindl = dscfg.get("rwindl", 6000.0) zthr = dscfg.get("Zthr", 40.0) vectorize = dscfg.get("vectorize", False) r_res = radar.range["data"][1] - radar.range["data"][0] swind_len = int(rwinds / r_res) smin_valid = int(swind_len / 2 + 1) lwind_len = int(rwindl / r_res) lmin_valid = int(lwind_len / 2 + 1) kdp_field = "corrected_specific_differential_phase" kdp = pyart.retrieve.kdp_leastsquare_double_window( radar, swind_len=swind_len, smin_valid=smin_valid, lwind_len=lwind_len, lmin_valid=lmin_valid, zthr=zthr, phidp_field=phidp_field, refl_field=refl_field, kdp_field=kdp_field, vectorize=vectorize, ) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(kdp_field, kdp) return new_dataset, ind_rad
[docs] def process_phidp_kdp_Vulpiani(procstatus, dscfg, radar_list=None): """ Computes specific differential phase and differential phase using the method developed by Vulpiani et al. The data is assumed to be clutter free and monotonous Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "PhiDP" or "PhiDPc" or "uPhiDP" rwind : float. Dataset keyword The length of the segment [m]. Default 2000. n_iter : int. Dataset keyword number of iterations. Default 3. interp : boolean. Dataset keyword if set non valid values are interpolated using neighbouring valid values. Default 0 (False) parallel : boolean. Dataset keyword if set use parallel computing. Default 1 (True) get_phidp : boolean. Datset keyword if set the PhiDP computed by integrating the resultant KDP is added to the radar field. Default 0 (False) frequency : float. Dataset keyword the radar frequency [Hz]. If None that of the key frequency in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present it will be assumed that the radar is C band radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "PhiDPc" and "KDPc" ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "PhiDP": phidp_field = "differential_phase" if datatype == "PhiDPc": phidp_field = "corrected_differential_phase" if datatype == "uPhiDP": phidp_field = "uncorrected_differential_phase" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if phidp_field not in radar.fields: warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data") return None, None # user defined parameters n_iter = dscfg.get("n_iter", 3) rwind = dscfg.get("rwind", 2000.0) interp = dscfg.get("interp", 0) parallel = dscfg.get("parallel", 1) get_phidp = dscfg.get("get_phidp", 0) # window length (must be even) r_res = radar.range["data"][1] - radar.range["data"][0] wind_len = int(rwind / r_res) if wind_len % 2 == 1: wind_len += 1 # get band freq = dscfg.get("frequency", None) if freq is None: if ( radar.instrument_parameters is not None and "frequency" in radar.instrument_parameters ): freq = radar.instrument_parameters["frequency"]["data"][0] band = "C" if freq is None: warn("Radar frequency unknown. Default C band will be applied") else: band = pyart.retrieve.get_freq_band(freq) if band is None: if freq < 2e9: band = "S" elif freq > 12e9: band = "X" warn( "Radar frequency out of range. Valid bands are S, C or X. " + band + " band will be applied" ) kdp_field = "corrected_specific_differential_phase" phidpr_field = "corrected_differential_phase" kdp_dict, phidpr_dict = pyart.retrieve.kdp_vulpiani( radar, gatefilter=None, fill_value=None, psidp_field=phidp_field, kdp_field=kdp_field, phidp_field=phidpr_field, band=band, windsize=wind_len, n_iter=n_iter, interp=interp, prefilter_psidp=False, filter_opt=None, parallel=parallel, ) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(kdp_field, kdp_dict) if get_phidp: new_dataset["radar_out"].add_field(phidpr_field, phidpr_dict) return new_dataset, ind_rad
[docs] def process_phidp_kdp_Kalman(procstatus, dscfg, radar_list=None): """ Computes specific differential phase and differential phase using the Kalman filter as proposed by Schneebeli et al. The data is assumed to be clutter free and continous Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "PhiDP" or "PhiDPc" or "uPhiDP" parallel : boolean. Dataset keyword if set use parallel computing get_phidp : boolean. Datset keyword if set the PhiDP computed by integrating the resultant KDP is added to the radar field frequency : float. Dataset keyword the radar frequency [Hz]. If None that of the key frequency in attribute instrument_parameters of the radar object will be used. If the key or the attribute are not present it will be assumed that the radar is C band radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output field "PhiDPc" and "KDPc" ind_rad : int radar index """ if procstatus != 1: return None, None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "PhiDP": phidp_field = "differential_phase" if datatype == "PhiDPc": phidp_field = "corrected_differential_phase" if datatype == "uPhiDP": phidp_field = "uncorrected_differential_phase" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if phidp_field not in radar.fields: warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data") return None, None # User defined options parallel = dscfg.get("parallel", 1) get_phidp = dscfg.get("get_phidp", 0) # get band freq = dscfg.get("frequency", None) if freq is None: if ( radar.instrument_parameters is not None and "frequency" in radar.instrument_parameters ): freq = radar.instrument_parameters["frequency"]["data"][0] band = "C" if freq is None: warn("Radar frequency unknown. Default C band will be applied") else: band = pyart.retrieve.get_freq_band(freq) if band is None: if freq < 2e9: band = "S" elif freq > 12e9: band = "X" warn( "Radar frequency out of range. Valid bands are S, C or X. " + band + " band will be applied" ) kdp_field = "corrected_specific_differential_phase" phidpr_field = "corrected_differential_phase" kdp_dict, _, phidpr_dict = pyart.retrieve.kdp_schneebeli( radar, gatefilter=None, fill_value=None, psidp_field=phidp_field, kdp_field=kdp_field, phidp_field=phidpr_field, band=band, rcov=0, pcov=0, prefilter_psidp=False, filter_opt=None, parallel=parallel, ) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field(kdp_field, kdp_dict) if get_phidp: new_dataset["radar_out"].add_field(phidpr_field, phidpr_dict) return new_dataset, ind_rad
[docs] def process_attenuation(procstatus, dscfg, radar_list=None): """ Computes specific attenuation and specific differential attenuation using the Z-Phi method and corrects reflectivity and differential reflectivity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types, must contain, "dBZ" or "dBZc", and, "PhiDP" or "PhiDPc", and, "ZDR" or "ZDRc", and "TEMP" or "H_ISO0" (Optional) ATT_METHOD : float. Dataset keyword The attenuation estimation method used. One of the following: ZPhi, Philin. Default ZPhi fzl : float. Dataset keyword The default freezing level height. It will be used if no temperature field name is specified or the temperature field is not in the radar object. Default 2000. sounding : str. Dataset keyword The nearest radiosounding WMO code (5 int digits). It will be used to compute the freezing level, if no temperature field name is specified, if the temperature field is in the radar object or if no freezing_level is explicitely defined. radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output fields "Ah" (spec. attenuation), "PIA" (path-integrated attenuation) and "dBZc" (corr. refl.) ind_rad : int radar index """ if procstatus != 1: return None, None temp = None iso0 = None zdr = None for datatypedescr in dscfg["datatype"]: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == "dBZc": refl = "corrected_reflectivity" if datatype == "PhiDPc": phidp = "corrected_differential_phase" if datatype == "ZDRc": zdr = "corrected_differential_reflectivity" if datatype == "dBZ": refl = "reflectivity" if datatype == "PhiDP": phidp = "differential_phase" if datatype == "ZDR": zdr = "differential_reflectivity" if datatype == "TEMP": temp = "temperature" if datatype == "H_ISO0": iso0 = "height_over_iso0" ind_rad = int(radarnr[5:8]) - 1 if radar_list[ind_rad] is None: warn("No valid radar") return None, None radar = radar_list[ind_rad] if phidp not in radar.fields or refl not in radar.fields: warn("Unable to compute attenuation. Missing data") return None, None # determine which freezing level reference fzl = None temp_ref = "fixed_fzl" if temp is not None: if temp in radar.fields: temp_ref = "temperature" else: warn( "COSMO temperature field not available. " + "Using fixed freezing level height to determine liquid phase" ) elif iso0 is not None: if iso0 in radar.fields: temp_ref = "height_over_iso0" else: warn( "Height over iso0 field not available. " + "Using fixed freezing level height to determine liquid phase" ) else: # determine freezing level height if necessary temp_ref = "fixed_fzl" if "fzl" in dscfg: fzl = dscfg["fzl"] elif "sounding" in dscfg: sounding_code = dscfg["sounding"] t0 = pyart.util.datetime_utils.datetime_from_radar(radar) fzl = read_fzl_igra(sounding_code, t0, dscfg=dscfg) else: warn("Freezing level height not defined. Using default " + str(fzl) + " m") fzl = 2000 att_method = dscfg.get("ATT_METHOD", "ZPhi") if att_method not in ("ZPhi", "Philin"): raise ValueError( "Unknown attenuation correction method. " + "Must be one of the following: [ZPhi, Philin]" ) if att_method == "ZPhi": spec_at, pia, cor_z, spec_diff_at, pida, cor_zdr = ( pyart.correct.calculate_attenuation_zphi( radar, doc=15, fzl=fzl, smooth_window_len=0, a_coef=None, beta=None, c=None, d=None, refl_field=refl, phidp_field=phidp, zdr_field=zdr, temp_field=temp, iso0_field=iso0, spec_at_field=None, pia_field=None, corr_refl_field=None, spec_diff_at_field=None, pida_field=None, corr_zdr_field=None, temp_ref=temp_ref, ) ) elif att_method == "Philin": spec_at, pia, cor_z, spec_diff_at, pida, cor_zdr = ( pyart.correct.calculate_attenuation_philinear( radar, doc=15, fzl=fzl, pia_coef=None, pida_coef=None, refl_field=refl, phidp_field=phidp, zdr_field=zdr, temp_field=temp, iso0_field=iso0, spec_at_field=None, pia_field=None, corr_refl_field=None, spec_diff_at_field=None, pida_field=None, corr_zdr_field=None, temp_ref=temp_ref, ) ) # prepare for exit new_dataset = {"radar_out": deepcopy(radar)} new_dataset["radar_out"].fields = dict() new_dataset["radar_out"].add_field("specific_attenuation", spec_at) new_dataset["radar_out"].add_field("path_integrated_attenuation", pia) new_dataset["radar_out"].add_field("corrected_reflectivity", cor_z) if (spec_diff_at is not None) and (cor_zdr is not None): new_dataset["radar_out"].add_field( "specific_differential_attenuation", spec_diff_at ) new_dataset["radar_out"].add_field( "path_integrated_differential_attenuation", pida ) new_dataset["radar_out"].add_field( "corrected_differential_reflectivity", cor_zdr ) else: warn( " Specific differential attenuation and attenuation " + "corrected differential reflectivity not available" ) return new_dataset, ind_rad