"""
pyrad.proc.process_phase
======================================
Functions for PhiDP and KDP processing and attenuation correction
.. autosummary::
:toctree: generated/
process_correct_phidp0
process_smooth_phidp_single_window
process_smooth_phidp_double_window
process_kdp_leastsquare_single_window
process_kdp_leastsquare_double_window
process_phidp_kdp_Vulpiani
process_phidp_kdp_Kalman
process_phidp_kdp_Maesaka
process_phidp_kdp_lp
process_selfconsistency_kdp_phidp
process_selfconsistency_bias
process_attenuation
"""
import warnings
from copy import deepcopy
from warnings import warn
import numpy as np
import pyart
from ..io.io_aux import get_datatype_fields
from ..io.read_data_sensor import read_fzl_igra
# Ignore warning in process_phidp_kdp_Maesaka
warnings.filterwarnings(
"ignore",
message=".*'partition' will ignore the 'mask' of the MaskedArray.*",
category=UserWarning,
)
[docs]
def process_correct_phidp0(procstatus, dscfg, radar_list=None):
"""
corrects phidp of the system phase
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"dBZ" or "dBZc", and,
"PhiDP" or "PhiDPc" or "uPhiDP"
rmin : float. Dataset keyword
The minimum range where to look for valid data [m]. Default 1000.
rmax : float. Dataset keyword
The maximum range where to look for valid data [m]. Default 50000.
rcell : float. Dataset keyword
The length of a continuous cell to consider it valid precip [m].
Default 1000.
Zmin : float. Dataset keyword
The minimum reflectivity [dBZ]. Default 20.
Zmax : float. Dataset keyword
The maximum reflectivity [dBZ]. Default 40.
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "PhiDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "dBZ":
refl_field = "reflectivity"
if datatype == "dBZc":
refl_field = "corrected_reflectivity"
if datatype == "PhiDP":
psidp_field = "differential_phase"
if datatype == "PhiDPc":
psidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
psidp_field = "uncorrected_differential_phase"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if (refl_field not in radar.fields) or (psidp_field not in radar.fields):
warn("Unable to correct PhiDP system offset. Missing data")
return None, None
# user defined parameters
rmin = dscfg.get("rmin", 1000.0)
rmax = dscfg.get("rmax", 50000.0)
rcell = dscfg.get("rcell", 1000.0)
zmin = dscfg.get("Zmin", 20.0)
zmax = dscfg.get("Zmax", 40.0)
ind_rmin = np.where(radar.range["data"] > rmin)[0][0]
ind_rmax = np.where(radar.range["data"] < rmax)[0][-1]
r_res = radar.range["data"][1] - radar.range["data"][0]
min_rcons = int(rcell / r_res)
if psidp_field.startswith("corrected_"):
phidp_field = psidp_field
elif psidp_field.startswith("uncorrected_"):
phidp_field = psidp_field.replace("uncorrected_", "corrected_", 1)
else:
phidp_field = "corrected_" + psidp_field
try:
phidp = pyart.correct.correct_sys_phase(
radar,
ind_rmin=ind_rmin,
ind_rmax=ind_rmax,
min_rcons=min_rcons,
zmin=zmin,
zmax=zmax,
psidp_field=psidp_field,
refl_field=refl_field,
phidp_field=phidp_field,
)
except AttributeError:
warn("Could not find correct_sys_phase function...")
warn("Skipping system phase correction...")
warn("Please use PyART-MCH to get this functionality")
phidp = radar.fields[phidp_field]
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(phidp_field, phidp)
return new_dataset, ind_rad
[docs]
def process_smooth_phidp_single_window(procstatus, dscfg, radar_list=None):
"""
corrects phidp of the system phase and smoothes it using one window
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"dBZ" or "dBZc", and,
"PhiDP" or "PhiDPc" or "uPhiDP"
rmin : float. Dataset keyword
The minimum range where to look for valid data [m]. Default 1000.
rmax : float. Dataset keyword
The maximum range where to look for valid data [m]. Default 50000.
rcell : float. Dataset keyword
The length of a continuous cell to consider it valid precip [m].
Default 1000.
rwind : float. Dataset keyword
The length of the smoothing window [m]. Default 6000.
Zmin : float. Dataset keyword
The minimum reflectivity [dBZ]. Default 20.
Zmax : float. Dataset keyword
The maximum reflectivity [dBZ]. Default 40.
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "PhiDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "dBZ":
refl_field = "reflectivity"
if datatype == "dBZc":
refl_field = "corrected_reflectivity"
if datatype == "PhiDP":
psidp_field = "differential_phase"
if datatype == "PhiDPc":
psidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
psidp_field = "uncorrected_differential_phase"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if (refl_field not in radar.fields) or (psidp_field not in radar.fields):
warn("Unable to smooth PhiDP. Missing data")
return None, None
# user defined parameters
rmin = dscfg.get("rmin", 1000.0)
rmax = dscfg.get("rmax", 50000.0)
rcell = dscfg.get("rcell", 1000.0)
zmin = dscfg.get("Zmin", 20.0)
zmax = dscfg.get("Zmax", 40.0)
rwind = dscfg.get("rwind", 6000.0)
ind_rmin = np.where(radar.range["data"] > rmin)[0][0]
ind_rmax = np.where(radar.range["data"] < rmax)[0][-1]
r_res = radar.range["data"][1] - radar.range["data"][0]
min_rcons = int(rcell / r_res)
wind_len = int(rwind / r_res)
min_valid = int(wind_len / 2 + 1)
if psidp_field.startswith("corrected_"):
phidp_field = psidp_field
elif psidp_field.startswith("uncorrected_"):
phidp_field = psidp_field.replace("uncorrected_", "corrected_", 1)
else:
phidp_field = "corrected_" + psidp_field
phidp = pyart.correct.smooth_phidp_single_window(
radar,
ind_rmin=ind_rmin,
ind_rmax=ind_rmax,
min_rcons=min_rcons,
zmin=zmin,
zmax=zmax,
wind_len=wind_len,
min_valid=min_valid,
psidp_field=psidp_field,
refl_field=refl_field,
phidp_field=phidp_field,
)
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(phidp_field, phidp)
return new_dataset, ind_rad
[docs]
def process_smooth_phidp_double_window(procstatus, dscfg, radar_list=None):
"""
corrects phidp of the system phase and smoothes it using one window
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"dBZ" or "dBZc", and,
"PhiDP" or "PhiDPc" or "uPhiDP"
rmin : float. Dataset keyword
The minimum range where to look for valid data [m]
rmax : float. Dataset keyword
The maximum range where to look for valid data [m]
rcell : float. Dataset keyword
The length of a continuous cell to consider it valid precip [m]
rwinds : float. Dataset keyword
The length of the short smoothing window [m]
rwindl : float. Dataset keyword
The length of the long smoothing window [m]
Zmin : float. Dataset keyword
The minimum reflectivity [dBZ]
Zmax : float. Dataset keyword
The maximum reflectivity [dBZ]
Zthr : float. Dataset keyword
The threshold defining wich smoothed data to used [dBZ]
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "PhiDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "dBZ":
refl_field = "reflectivity"
if datatype == "dBZc":
refl_field = "corrected_reflectivity"
if datatype == "PhiDP":
psidp_field = "differential_phase"
if datatype == "PhiDPc":
psidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
psidp_field = "uncorrected_differential_phase"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if (refl_field not in radar.fields) or (psidp_field not in radar.fields):
warn("Unable to smooth PhiDP. Missing data")
return None, None
# user defined parameters
rmin = dscfg.get("rmin", 1000.0)
rmax = dscfg.get("rmax", 50000.0)
rcell = dscfg.get("rcell", 1000.0)
zmin = dscfg.get("Zmin", 20.0)
zmax = dscfg.get("Zmax", 40.0)
rwinds = dscfg.get("rwinds", 2000.0)
rwindl = dscfg.get("rwindl", 6000.0)
zthr = dscfg.get("Zthr", 40.0)
ind_rmin = np.where(radar.range["data"] > rmin)[0][0]
ind_rmax = np.where(radar.range["data"] < rmax)[0][-1]
r_res = radar.range["data"][1] - radar.range["data"][0]
min_rcons = int(rcell / r_res)
swind_len = int(rwinds / r_res)
smin_valid = int(swind_len / 2 + 1)
lwind_len = int(rwindl / r_res)
lmin_valid = int(lwind_len / 2 + 1)
if psidp_field.startswith("corrected_"):
phidp_field = psidp_field
elif psidp_field.startswith("uncorrected_"):
phidp_field = psidp_field.replace("uncorrected_", "corrected_", 1)
else:
phidp_field = "corrected_" + psidp_field
phidp = pyart.correct.smooth_phidp_double_window(
radar,
ind_rmin=ind_rmin,
ind_rmax=ind_rmax,
min_rcons=min_rcons,
zmin=zmin,
zmax=zmax,
swind_len=swind_len,
smin_valid=smin_valid,
lwind_len=lwind_len,
lmin_valid=lmin_valid,
zthr=zthr,
psidp_field=psidp_field,
refl_field=refl_field,
phidp_field=phidp_field,
)
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(phidp_field, phidp)
return new_dataset, ind_rad
[docs]
def process_phidp_kdp_Maesaka(procstatus, dscfg, radar_list=None):
"""
Estimates PhiDP and KDP using the method by Maesaka. This method only
retrieves data in rain (i.e. below the melting layer)
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"dBZ" or "dBZc", and,
"PhiDP" or "PhiDPc" or "uPhiDP", and
"TEMP" or "H_ISO0" (Optional)
rmin : float. Dataset keyword
The minimum range where to look for valid data [m]. Default 1000.
rmax : float. Dataset keyword
The maximum range where to look for valid data [m]. Default 50000.
rcell : float. Dataset keyword
The length of a continuous cell to consider it valid precip [m].
Default 1000.
Zmin : float. Dataset keyword
The minimum reflectivity [dBZ]. Default 20
Zmax : float. Dataset keyword
The maximum reflectivity [dBZ]. Default 40
fzl : float. Dataset keyword
The freezing level height [m]. Default 2000.
sounding : str. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used
to compute the freezing level, if no temperature field name is
specified, if the temperature field isin the radar object or if no
freezing_level is explicitely defined.
ml_thickness : float. Dataset keyword
The melting layer thickness in meters. Default 700.
beamwidth : float. Dataset keyword
the antenna beamwidth [deg]. If None that of the keys
radar_beam_width_h or radar_beam_width_v in attribute
instrument_parameters of the radar object will be used. If the key
or the attribute are not present the beamwidth will be set to None
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "PhiDPc" and "KDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
temp_field = None
iso0_field = None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "PhiDP":
psidp_field = "differential_phase"
if datatype == "PhiDPc":
psidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
psidp_field = "uncorrected_differential_phase"
if datatype == "dBZ":
refl_field = "reflectivity"
if datatype == "dBZc":
refl_field = "corrected_reflectivity"
if datatype == "TEMP":
temp_field = "temperature"
if datatype == "H_ISO0":
iso0_field = "height_over_iso0"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if (refl_field not in radar.fields) or (psidp_field not in radar.fields):
warn(
"Unable to retrieve PhiDP KDP using the Maesaka approach. " + "Missing data"
)
return None, None
# user defined parameters
rmin = dscfg.get("rmin", 1000.0)
rmax = dscfg.get("rmax", 50000.0)
rcell = dscfg.get("rcell", 1000.0)
zmin = dscfg.get("Zmin", 20.0)
zmax = dscfg.get("Zmax", 40.0)
thickness = dscfg.get("ml_thickness", 700.0)
fzl = None
temp_ref = "fixed_fzl"
# determine which freezing level reference
if temp_field is not None:
if temp_field in radar.fields:
temp_ref = "temperature"
else:
warn(
"COSMO temperature field not available. "
+ "Using fixed freezing level height to determine liquid phase"
)
elif iso0_field is not None:
if iso0_field in radar.fields:
temp_ref = "height_over_iso0"
else:
warn(
"Height over iso0 field not available. "
+ "Using fixed freezing level height to determine liquid phase"
)
else:
# determine freezing level height if necessary
temp_ref = "fixed_fzl"
if "fzl" in dscfg:
fzl = dscfg["fzl"]
elif "sounding" in dscfg:
sounding_code = dscfg["sounding"]
t0 = pyart.util.datetime_utils.datetime_from_radar(radar)
fzl = read_fzl_igra(sounding_code, t0, dscfg=dscfg)
else:
warn("Freezing level height not defined. Using default " + str(fzl) + " m")
fzl = 2000
phidp_field = "corrected_differential_phase"
kdp_field = "corrected_specific_differential_phase"
radar_aux = deepcopy(radar)
# correct PhiDP0
ind_rmin = np.where(radar_aux.range["data"] > rmin)[0][0]
ind_rmax = np.where(radar_aux.range["data"] < rmax)[0][-1]
r_res = radar_aux.range["data"][1] - radar_aux.range["data"][0]
min_rcons = int(rcell / r_res)
try:
phidp = pyart.correct.correct_sys_phase(
radar_aux,
ind_rmin=ind_rmin,
ind_rmax=ind_rmax,
min_rcons=min_rcons,
zmin=zmin,
zmax=zmax,
psidp_field=psidp_field,
refl_field=refl_field,
phidp_field=phidp_field,
)
except AttributeError:
warn("Could not find correct_sys_phase function...")
warn("Skipping system phase correction...")
warn("Please use PyART-MCH to get this functionality")
phidp = radar_aux.fields[phidp_field]
# filter out data in an above the melting layer
mask = np.ma.getmaskarray(phidp["data"])
beamwidth = dscfg.get("beamwidth", None)
if beamwidth is None:
if radar.instrument_parameters is not None:
if "radar_beam_width_h" in radar.instrument_parameters:
beamwidth = radar.instrument_parameters["radar_beam_width_h"]["data"][0]
elif "radar_beam_width_v" in radar.instrument_parameters:
beamwidth = radar.instrument_parameters["radar_beam_width_v"]["data"][0]
if beamwidth is None:
warn("Antenna beam width unknown.")
try:
mask_fzl, _ = pyart.correct.get_mask_fzl(
radar_aux,
fzl=fzl,
doc=15,
min_temp=0.0,
max_h_iso0=0.0,
thickness=thickness,
beamwidth=beamwidth,
temp_field=temp_field,
iso0_field=iso0_field,
temp_ref=temp_ref,
)
mask = np.logical_or(mask, mask_fzl)
except AttributeError:
warn("Masking above FZL is only available in PyART-MCH")
warn("Please use this library instead of ARM's version")
# filter out data with invalid reflectivity
mask_refl = np.ma.getmaskarray(radar_aux.fields[refl_field]["data"])
mask = np.logical_or(mask, mask_refl)
phidp["data"] = np.ma.masked_where(mask, phidp["data"])
fill_value = pyart.config.get_fillvalue()
radar_aux.add_field(phidp_field, phidp, replace_existing=True)
# the return data is not a masked array
kdp, phidpf, _ = pyart.retrieve.kdp_proc.kdp_maesaka(
radar_aux,
gatefilter=None,
method="cg",
backscatter=None,
Clpf=1.0,
length_scale=None,
first_guess=0.01,
finite_order="low",
fill_value=fill_value,
psidp_field=phidp_field,
kdp_field=kdp_field,
phidp_field=phidp_field,
)
kdp["data"] = np.ma.masked_where(mask, kdp["data"])
phidpf["data"] = np.ma.masked_where(mask, phidpf["data"])
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar_aux)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(phidp_field, phidpf)
new_dataset["radar_out"].add_field(kdp_field, kdp)
return new_dataset, ind_rad
[docs]
def process_phidp_kdp_lp(procstatus, dscfg, radar_list=None):
"""
Estimates PhiDP and KDP using a linear programming algorithm.
This method only retrieves data in rain (i.e. below the melting layer).
The method has 3 steps: PhiDP unfolding (including clutter suppression),
Processing PhiDP using the LP algorithm, Obtaining KDP by convoluting
PhiDP with a Sobel window.
Required inputs for the LP algorithm are PsiDP and reflectivity.
RhoHV and SNR are used for the clutter suppression in the PhiDP unfolding
step (note that SNR is used instead of Normalized Coherent Power used by
the original algorithm). If they are not provided a gate_filter based on
the values of reflectivity is used instead.
Freezing level height can be retrieved from iso-0 or temperature fields,
from radio sounding or set by the user.
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"dBZ" or "dBZc", and,
"PhiDP" or "PhiDPc" or "uPhiDP", and,
"RhoHV" or "RhoHVc", (Optional, used when min_rhv is specified) and,
"SNRh" (Optional, used when min_snr is specified), and
"TEMP" or "H_ISO0" (Optional)
fzl : float. Dataset keyword
The freezing level height [m]. Default 2000.
sounding : str. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used
to compute the freezing level, if no temperature field name is
specified, if the temperature field is not in the radar object or
if no freezing_level is explicitely defined.
ml_thickness : float. Dataset keyword
The melting layer thickness in meters. Default 700.
beamwidth : float. Dataset keyword
the antenna beamwidth [deg]. If None that of the keys
radar_beam_width_h or radar_beam_width_v in attribute
instrument_parameters of the radar object will be used. If the key
or the attribute are not present the beamwidth will be set to None
LP_solver : str.
The LP solver to use. Can be pyglpk, cvxopt, cylp, cylp_mp.
Default cvxopt
proc : int
Number of worker processes. Only used when LP_solver is cylp_mp.
Default 1
min_snr, min_rhv : float
Minimum SNR and RhoHV. Used to filter out non-meteorological
echoes when performing the unfolding of the differential phase.
Default 10 and 0.6
sys_phase : float
Default system differential phase offset in deg. Default 0.
overide_sys_phase : bool
If True the dynamic sys_phase not computed and the default
sys_phase is used. If false a dynamic sys_phase is computed. If
no dynamic value is found the default sys_phase is used.
Default False
first_gate_sysp : int
First gate to use when determining the system differential phase
offset. Default 0
nowrap : int or None
Gate number where to begin the phase unwrapping. None will unwrap
from gate 0. Default None
ncpts : int
Minimum number of continuous valid PhiDP points. Segments below
this number or starting at a gate below this number are going to
be excluded from the unfolding. Default 2.
z_bias : float
reflectivity bias. Default 0 dBZ
low_z, high_z : float
mininum and maximum reflectivity values. Values beyond this range
are going to be set to this range limits. The modified
reflectivity is used in the LP algorithm. Default 10 and 53 dBZ
min_phidp : float
minimum differential phase. PhiDP values below this threshold are
going to be set to the threshold values. The modified PhiDP is
used in the LP algorithm. Default 0.1 deg
doc : int
Number of gates to doc at the end of the ray. Used in the LP
algorithm. Default 0
self_const : float
selfconsistency factor. Used in the LP algorithm. Default 60000
coef : float
Exponent linking Z to KDP in selfconsistency. Used in the LP
algorithm. kdp = (10**(0.1z))**coef. Default 0.914
window_len : int
Length of Sobel Window applied to PhiDP field before computing
KDP. Default 35
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "PhiDPc" and "KDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
temp_field = None
iso0_field = None
rhv_field = None
snr_field = None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "PhiDP":
psidp_field = "differential_phase"
if datatype == "PhiDPc":
psidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
psidp_field = "uncorrected_differential_phase"
if datatype == "dBZ":
refl_field = "reflectivity"
if datatype == "dBZc":
refl_field = "corrected_reflectivity"
if datatype == "RhoHVc":
rhv_field = "corrected_cross_correlation_ratio"
if datatype == "RhoHV":
rhv_field = "cross_correlation_ratio"
if datatype == "SNRh":
snr_field = "signal_to_noise_ratio_hh"
if datatype == "TEMP":
temp_field = "temperature"
if datatype == "H_ISO0":
iso0_field = "height_over_iso0"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if (refl_field not in radar.fields) or (psidp_field not in radar.fields):
warn(
"Unable to retrieve PhiDP and KDP using the LP approach. "
+ "Missing reflectivity and/or PsiDP data"
)
return None, None
fzl = None
temp_ref = "fixed_fzl"
# determine which freezing level reference
if temp_field is not None:
if temp_field in radar.fields:
temp_ref = "temperature"
else:
warn(
"COSMO temperature field not available. "
+ "Using fixed freezing level height to determine liquid phase"
)
elif iso0_field is not None:
if iso0_field in radar.fields:
temp_ref = "height_over_iso0"
else:
warn(
"Height over iso0 field not available. "
+ "Using fixed freezing level height to determine liquid phase"
)
else:
# determine freezing level height if necessary
temp_ref = "fixed_fzl"
if "fzl" in dscfg:
fzl = dscfg["fzl"]
elif "sounding" in dscfg:
sounding_code = dscfg["sounding"]
t0 = pyart.util.datetime_utils.datetime_from_radar(radar)
fzl = read_fzl_igra(sounding_code, t0, dscfg=dscfg)
else:
fzl = 2000
warn("Freezing level height not defined. Using default " + str(fzl) + " m")
radar_aux = deepcopy(radar)
# user config
LP_solver = dscfg.get("LP_solver", "cvxopt")
thickness = dscfg.get("ml_thickness", 700.0)
offset = -dscfg.get("z_bias", 0.0)
self_const = dscfg.get("self_const", 60000.0)
low_z = dscfg.get("low_z", 10.0)
high_z = dscfg.get("high_z", 53.0)
min_phidp = dscfg.get("min_phidp", 0.01)
min_ncp = dscfg.get("min_snr", 10.0)
min_rhv = dscfg.get("min_rhv", 0.6)
sys_phase = dscfg.get("sys_phase", 0.0)
first_gate_sysp = dscfg.get("first_gate_sysp", 0)
ncpts = dscfg.get("ncpts", 2)
overide_sys_phase = dscfg.get("overide_sys_phase", False)
nowrap = dscfg.get("nowrap", None)
window_len = dscfg.get("window_len", 35)
proc = dscfg.get("proc", 1)
coef = dscfg.get("coef", 0.914)
doc = dscfg.get("doc", 0)
# filter out data in an above the melting layer
mask = np.ma.getmaskarray(radar_aux.fields[psidp_field]["data"])
beamwidth = dscfg.get("beamwidth", None)
if beamwidth is None:
if radar.instrument_parameters is not None:
if "radar_beam_width_h" in radar.instrument_parameters:
beamwidth = radar.instrument_parameters["radar_beam_width_h"]["data"][0]
elif "radar_beam_width_v" in radar.instrument_parameters:
beamwidth = radar.instrument_parameters["radar_beam_width_v"]["data"][0]
if beamwidth is None:
warn("Antenna beam width unknown.")
mask_fzl, _ = pyart.correct.get_mask_fzl(
radar_aux,
fzl=fzl,
doc=15,
min_temp=0.0,
max_h_iso0=0.0,
thickness=thickness,
beamwidth=beamwidth,
temp_field=temp_field,
iso0_field=iso0_field,
temp_ref=temp_ref,
)
mask = np.logical_or(mask, mask_fzl)
# filter out data with invalid reflectivity
mask_refl = np.ma.getmaskarray(radar_aux.fields[refl_field]["data"])
mask = np.logical_or(mask, mask_refl)
radar_aux.fields[psidp_field]["data"] = np.ma.masked_where(
mask, radar_aux.fields[psidp_field]["data"]
)
phidp_field = "corrected_differential_phase"
kdp_field = "corrected_specific_differential_phase"
# fzl is None meaning temperature fields could be used:
# set fzl to an arbitrary high value
if fzl is None:
fzl = 5000.0
if rhv_field is not None and snr_field is not None:
phidp, kdp = pyart.correct.phase_proc_lp(
radar_aux,
offset,
debug=False,
self_const=self_const,
low_z=low_z,
high_z=high_z,
min_phidp=min_phidp,
min_ncp=min_ncp,
min_rhv=min_rhv,
fzl=fzl,
sys_phase=sys_phase,
ncpts=ncpts,
overide_sys_phase=overide_sys_phase,
nowrap=nowrap,
really_verbose=False,
LP_solver=LP_solver,
refl_field=refl_field,
ncp_field=snr_field,
rhv_field=rhv_field,
phidp_field=psidp_field,
kdp_field=kdp_field,
unf_field=phidp_field,
window_len=window_len,
proc=proc,
coef=coef,
)
else:
if not overide_sys_phase:
sys_phase = None
gatefilter = pyart.filters.GateFilter(radar_aux)
gatefilter.exclude_masked(psidp_field)
phidp, kdp = pyart.correct.phase_proc_lp_gf(
radar_aux,
offset=offset,
gatefilter=gatefilter,
debug=False,
self_const=self_const,
low_z=low_z,
high_z=high_z,
min_phidp=min_phidp,
fzl=fzl,
system_phase=sys_phase,
ncpts=ncpts,
first_gate_sysp=first_gate_sysp,
nowrap=nowrap,
really_verbose=False,
LP_solver=LP_solver,
refl_field=refl_field,
phidp_field=psidp_field,
kdp_field=kdp_field,
unf_field=phidp_field,
window_len=window_len,
proc=proc,
coef=coef,
doc=doc,
)
kdp["data"] = np.ma.masked_where(mask, kdp["data"])
phidp["data"] = np.ma.masked_where(mask, phidp["data"])
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(phidp_field, phidp)
new_dataset["radar_out"].add_field(kdp_field, kdp)
return new_dataset, ind_rad
[docs]
def process_kdp_leastsquare_single_window(procstatus, dscfg, radar_list=None):
"""
Computes specific differential phase using a piecewise least square method
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"PhiDP" or "PhiDPc" or "uPhiDP"
rwind : float. Dataset keyword
The length of the segment for the least square method [m].
Default 6000.
vectorize : bool. Dataset keyword
Whether to vectorize the KDP processing. Default false
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "KDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "PhiDP":
phidp_field = "differential_phase"
if datatype == "PhiDPc":
phidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
phidp_field = "uncorrected_differential_phase"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if phidp_field not in radar.fields:
warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data")
return None, None
# user defined parameters
rwind = dscfg.get("rwind", 6000.0)
vectorize = dscfg.get("vectorize", False)
r_res = radar.range["data"][1] - radar.range["data"][0]
wind_len = int(rwind / r_res)
min_valid = int(wind_len / 2 + 1)
kdp_field = "corrected_specific_differential_phase"
kdp = pyart.retrieve.kdp_leastsquare_single_window(
radar,
wind_len=wind_len,
min_valid=min_valid,
phidp_field=phidp_field,
kdp_field=kdp_field,
vectorize=vectorize,
)
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(kdp_field, kdp)
return new_dataset, ind_rad
[docs]
def process_kdp_leastsquare_double_window(procstatus, dscfg, radar_list=None):
"""
Computes specific differential phase using a piecewise least square method
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
The input data types, must contain,
"PhiDP" or "PhiDPc" or "uPhiDP", and,
"dBZ" or "dBZc"
rwinds : float. Dataset keyword
The length of the short segment for the least square method [m].
Default 2000.
rwindl : float. Dataset keyword
The length of the long segment for the least square method [m].
Default 6000.
Zthr : float. Dataset keyword
The threshold defining which estimated data to use [dBZ]
vectorize : Bool. Dataset keyword
Whether to vectorize the KDP processing. Default false
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "KDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "PhiDP":
phidp_field = "differential_phase"
if datatype == "PhiDPc":
phidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
phidp_field = "uncorrected_differential_phase"
if datatype == "dBZ":
refl_field = "reflectivity"
if datatype == "dBZc":
refl_field = "corrected_reflectivity"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if (phidp_field not in radar.fields) or (refl_field not in radar.fields):
warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data")
return None, None
# user defined parameters
rwinds = dscfg.get("rwinds", 2000.0)
rwindl = dscfg.get("rwindl", 6000.0)
zthr = dscfg.get("Zthr", 40.0)
vectorize = dscfg.get("vectorize", False)
r_res = radar.range["data"][1] - radar.range["data"][0]
swind_len = int(rwinds / r_res)
smin_valid = int(swind_len / 2 + 1)
lwind_len = int(rwindl / r_res)
lmin_valid = int(lwind_len / 2 + 1)
kdp_field = "corrected_specific_differential_phase"
kdp = pyart.retrieve.kdp_leastsquare_double_window(
radar,
swind_len=swind_len,
smin_valid=smin_valid,
lwind_len=lwind_len,
lmin_valid=lmin_valid,
zthr=zthr,
phidp_field=phidp_field,
refl_field=refl_field,
kdp_field=kdp_field,
vectorize=vectorize,
)
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(kdp_field, kdp)
return new_dataset, ind_rad
[docs]
def process_phidp_kdp_Vulpiani(procstatus, dscfg, radar_list=None):
"""
Computes specific differential phase and differential phase using the
method developed by Vulpiani et al.
The data is assumed to be clutter free and monotonous
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"PhiDP" or "PhiDPc" or "uPhiDP"
rwind : float. Dataset keyword
The length of the segment [m]. Default 2000.
n_iter : int. Dataset keyword
number of iterations. Default 3.
interp : boolean. Dataset keyword
if set non valid values are interpolated using neighbouring valid
values. Default 0 (False)
parallel : boolean. Dataset keyword
if set use parallel computing. Default 1 (True)
get_phidp : boolean. Datset keyword
if set the PhiDP computed by integrating the resultant KDP is
added to the radar field. Default 0 (False)
frequency : float. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
it will be assumed that the radar is C band
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "PhiDPc" and "KDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "PhiDP":
phidp_field = "differential_phase"
if datatype == "PhiDPc":
phidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
phidp_field = "uncorrected_differential_phase"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if phidp_field not in radar.fields:
warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data")
return None, None
# user defined parameters
n_iter = dscfg.get("n_iter", 3)
rwind = dscfg.get("rwind", 2000.0)
interp = dscfg.get("interp", 0)
parallel = dscfg.get("parallel", 1)
get_phidp = dscfg.get("get_phidp", 0)
# window length (must be even)
r_res = radar.range["data"][1] - radar.range["data"][0]
wind_len = int(rwind / r_res)
if wind_len % 2 == 1:
wind_len += 1
# get band
freq = dscfg.get("frequency", None)
if freq is None:
if (
radar.instrument_parameters is not None
and "frequency" in radar.instrument_parameters
):
freq = radar.instrument_parameters["frequency"]["data"][0]
band = "C"
if freq is None:
warn("Radar frequency unknown. Default C band will be applied")
else:
band = pyart.retrieve.get_freq_band(freq)
if band is None:
if freq < 2e9:
band = "S"
elif freq > 12e9:
band = "X"
warn(
"Radar frequency out of range. Valid bands are S, C or X. "
+ band
+ " band will be applied"
)
kdp_field = "corrected_specific_differential_phase"
phidpr_field = "corrected_differential_phase"
kdp_dict, phidpr_dict = pyart.retrieve.kdp_vulpiani(
radar,
gatefilter=None,
fill_value=None,
psidp_field=phidp_field,
kdp_field=kdp_field,
phidp_field=phidpr_field,
band=band,
windsize=wind_len,
n_iter=n_iter,
interp=interp,
prefilter_psidp=False,
filter_opt=None,
parallel=parallel,
)
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(kdp_field, kdp_dict)
if get_phidp:
new_dataset["radar_out"].add_field(phidpr_field, phidpr_dict)
return new_dataset, ind_rad
[docs]
def process_phidp_kdp_Kalman(procstatus, dscfg, radar_list=None):
"""
Computes specific differential phase and differential phase using the
Kalman filter as proposed by Schneebeli et al.
The data is assumed to be clutter free and continous
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"PhiDP" or "PhiDPc" or "uPhiDP"
parallel : boolean. Dataset keyword
if set use parallel computing
get_phidp : boolean. Datset keyword
if set the PhiDP computed by integrating the resultant KDP is
added to the radar field
frequency : float. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
it will be assumed that the radar is C band
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output field "PhiDPc" and "KDPc"
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "PhiDP":
phidp_field = "differential_phase"
if datatype == "PhiDPc":
phidp_field = "corrected_differential_phase"
if datatype == "uPhiDP":
phidp_field = "uncorrected_differential_phase"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if phidp_field not in radar.fields:
warn("Unable to retrieve KDP from PhiDP using least square. " + "Missing data")
return None, None
# User defined options
parallel = dscfg.get("parallel", 1)
get_phidp = dscfg.get("get_phidp", 0)
# get band
freq = dscfg.get("frequency", None)
if freq is None:
if (
radar.instrument_parameters is not None
and "frequency" in radar.instrument_parameters
):
freq = radar.instrument_parameters["frequency"]["data"][0]
band = "C"
if freq is None:
warn("Radar frequency unknown. Default C band will be applied")
else:
band = pyart.retrieve.get_freq_band(freq)
if band is None:
if freq < 2e9:
band = "S"
elif freq > 12e9:
band = "X"
warn(
"Radar frequency out of range. Valid bands are S, C or X. "
+ band
+ " band will be applied"
)
kdp_field = "corrected_specific_differential_phase"
phidpr_field = "corrected_differential_phase"
kdp_dict, _, phidpr_dict = pyart.retrieve.kdp_schneebeli(
radar,
gatefilter=None,
fill_value=None,
psidp_field=phidp_field,
kdp_field=kdp_field,
phidp_field=phidpr_field,
band=band,
rcov=0,
pcov=0,
prefilter_psidp=False,
filter_opt=None,
parallel=parallel,
)
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field(kdp_field, kdp_dict)
if get_phidp:
new_dataset["radar_out"].add_field(phidpr_field, phidpr_dict)
return new_dataset, ind_rad
[docs]
def process_attenuation(procstatus, dscfg, radar_list=None):
"""
Computes specific attenuation and specific differential attenuation using
the Z-Phi method and corrects reflectivity and differential reflectivity
Parameters
----------
procstatus : int
Processing status: 0 initializing, 1 processing volume,
2 post-processing
dscfg : dictionary of dictionaries
data set configuration. Accepted Configuration Keywords::
datatype : list of string. Dataset keyword
The input data types, must contain,
"dBZ" or "dBZc", and,
"PhiDP" or "PhiDPc", and,
"ZDR" or "ZDRc", and
"TEMP" or "H_ISO0" (Optional)
ATT_METHOD : float. Dataset keyword
The attenuation estimation method used. One of the following:
ZPhi, Philin. Default ZPhi
fzl : float. Dataset keyword
The default freezing level height. It will be used if no
temperature field name is specified or the temperature field is
not in the radar object. Default 2000.
sounding : str. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used
to compute the freezing level, if no temperature field name is
specified, if the temperature field is in the radar object or if
no freezing_level is explicitely defined.
radar_list : list of Radar objects
Optional. list of radar objects
Returns
-------
new_dataset : dict
dictionary containing the output fields "Ah" (spec. attenuation),
"PIA" (path-integrated attenuation) and "dBZc" (corr. refl.)
ind_rad : int
radar index
"""
if procstatus != 1:
return None, None
temp = None
iso0 = None
zdr = None
for datatypedescr in dscfg["datatype"]:
radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr)
if datatype == "dBZc":
refl = "corrected_reflectivity"
if datatype == "PhiDPc":
phidp = "corrected_differential_phase"
if datatype == "ZDRc":
zdr = "corrected_differential_reflectivity"
if datatype == "dBZ":
refl = "reflectivity"
if datatype == "PhiDP":
phidp = "differential_phase"
if datatype == "ZDR":
zdr = "differential_reflectivity"
if datatype == "TEMP":
temp = "temperature"
if datatype == "H_ISO0":
iso0 = "height_over_iso0"
ind_rad = int(radarnr[5:8]) - 1
if radar_list[ind_rad] is None:
warn("No valid radar")
return None, None
radar = radar_list[ind_rad]
if phidp not in radar.fields or refl not in radar.fields:
warn("Unable to compute attenuation. Missing data")
return None, None
# determine which freezing level reference
fzl = None
temp_ref = "fixed_fzl"
if temp is not None:
if temp in radar.fields:
temp_ref = "temperature"
else:
warn(
"COSMO temperature field not available. "
+ "Using fixed freezing level height to determine liquid phase"
)
elif iso0 is not None:
if iso0 in radar.fields:
temp_ref = "height_over_iso0"
else:
warn(
"Height over iso0 field not available. "
+ "Using fixed freezing level height to determine liquid phase"
)
else:
# determine freezing level height if necessary
temp_ref = "fixed_fzl"
if "fzl" in dscfg:
fzl = dscfg["fzl"]
elif "sounding" in dscfg:
sounding_code = dscfg["sounding"]
t0 = pyart.util.datetime_utils.datetime_from_radar(radar)
fzl = read_fzl_igra(sounding_code, t0, dscfg=dscfg)
else:
warn("Freezing level height not defined. Using default " + str(fzl) + " m")
fzl = 2000
att_method = dscfg.get("ATT_METHOD", "ZPhi")
if att_method not in ("ZPhi", "Philin"):
raise ValueError(
"Unknown attenuation correction method. "
+ "Must be one of the following: [ZPhi, Philin]"
)
if att_method == "ZPhi":
spec_at, pia, cor_z, spec_diff_at, pida, cor_zdr = (
pyart.correct.calculate_attenuation_zphi(
radar,
doc=15,
fzl=fzl,
smooth_window_len=0,
a_coef=None,
beta=None,
c=None,
d=None,
refl_field=refl,
phidp_field=phidp,
zdr_field=zdr,
temp_field=temp,
iso0_field=iso0,
spec_at_field=None,
pia_field=None,
corr_refl_field=None,
spec_diff_at_field=None,
pida_field=None,
corr_zdr_field=None,
temp_ref=temp_ref,
)
)
elif att_method == "Philin":
spec_at, pia, cor_z, spec_diff_at, pida, cor_zdr = (
pyart.correct.calculate_attenuation_philinear(
radar,
doc=15,
fzl=fzl,
pia_coef=None,
pida_coef=None,
refl_field=refl,
phidp_field=phidp,
zdr_field=zdr,
temp_field=temp,
iso0_field=iso0,
spec_at_field=None,
pia_field=None,
corr_refl_field=None,
spec_diff_at_field=None,
pida_field=None,
corr_zdr_field=None,
temp_ref=temp_ref,
)
)
# prepare for exit
new_dataset = {"radar_out": deepcopy(radar)}
new_dataset["radar_out"].fields = dict()
new_dataset["radar_out"].add_field("specific_attenuation", spec_at)
new_dataset["radar_out"].add_field("path_integrated_attenuation", pia)
new_dataset["radar_out"].add_field("corrected_reflectivity", cor_z)
if (spec_diff_at is not None) and (cor_zdr is not None):
new_dataset["radar_out"].add_field(
"specific_differential_attenuation", spec_diff_at
)
new_dataset["radar_out"].add_field(
"path_integrated_differential_attenuation", pida
)
new_dataset["radar_out"].add_field(
"corrected_differential_reflectivity", cor_zdr
)
else:
warn(
" Specific differential attenuation and attenuation "
+ "corrected differential reflectivity not available"
)
return new_dataset, ind_rad