Source code for pyrad.graph.plots_timeseries

"""
pyrad.graph.plot_timeseries
===========================

Functions to plot Pyrad datasets

.. autosummary::
    :toctree: generated/

    plot_timeseries
    plot_timeseries_comp
    plot_monitoring_ts
    plot_intercomp_scores_ts
    plot_ml_ts
    plot_sun_retrieval_ts

"""

import pyart
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from warnings import warn

import numpy as np
import datetime

import matplotlib as mpl

mpl.use("Agg")

# Increase a bit font size
mpl.rcParams.update({"font.size": 16})
mpl.rcParams.update({"font.family": "sans-serif"})


[docs] def plot_timeseries( tvec, data_list, fname_list, labelx="Time [UTC]", labely="Value", labels=["Sensor"], title="Time Series", period=0, timeformat=None, colors=None, linestyles=None, markers=None, ymin=None, ymax=None, dpi=72, ): """ plots a time series Parameters ---------- tvec : datetime object time of the time series data_list : list of float array values of the time series fname_list : list of str list of names of the files where to store the plot labelx : str The label of the X axis labely : str The label of the Y axis labels : array of str The label of the legend title : str The figure title period : float measurement period in seconds used to compute accumulation. If 0 no accumulation is computed timeformat : str Specifies the tvec and time format on the x axis colors : array of str Specifies the colors of each line linestyles : array of str Specifies the line style of each line markers: array of str Specify the markers to be used for each line ymin, ymax: float Lower/Upper limit of y axis dpi : int dots per inch Returns ------- fname_list : list of str list of names of the created plots History -------- 201?.??.?? -fvj- creation 2017.08.21 -jgr- modified margins and grid + minor graphical updates 2018.03.05 -jgr- added x-limit of x axis to avoid unwanted error messages """ tvec = np.array(tvec) # convert from pandas if needed if period > 0: for i, data in enumerate(data_list): data *= period / 3600.0 data_list[i] = np.ma.cumsum(data) fig, ax = plt.subplots(figsize=[10, 6], dpi=dpi) lab = None col = None lstyle = "--" marker = "o" for i, data in enumerate(data_list): if labels is not None: lab = labels[i] if colors is not None: col = colors[i] if linestyles is not None: lstyle = linestyles[i] if markers is not None: marker = markers[i] ax.plot(tvec, data, label=lab, color=col, linestyle=lstyle, marker=marker) ax.set_title(title) ax.set_xlabel(labelx) ax.set_ylabel(labely) ax.set_ylim(bottom=ymin, top=ymax) ax.set_xlim([tvec[0], tvec[-1]]) # Turn on the grid ax.grid() if timeformat is not None: ax.xaxis.set_major_formatter(mdates.DateFormatter(timeformat)) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() # Make a tight layout fig.tight_layout() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list
[docs] def plot_timeseries_comp( date1, value1, date2, value2, fname_list, labelx="Time [UTC]", labely="Value", label1="Sensor 1", label2="Sensor 2", titl="Time Series Comparison", period1=0, period2=0, ymin=None, ymax=None, dpi=72, ): """ plots 2 time series in the same graph Parameters ---------- date1 : datetime object time of the first time series value1 : float array values of the first time series date2 : datetime object time of the second time series value2 : float array values of the second time series fname_list : list of str list of names of the files where to store the plot labelx : str The label of the X axis labely : str The label of the Y axis label1, label2 : str legend label for each time series titl : str The figure title period1, period2 : float measurement period in seconds used to compute accumulation. If 0 no accumulation is computed dpi : int dots per inch ymin, ymax : float The limits of the Y-axis. None will keep the default limit. Returns ------- fname_list : list of str list of names of the created plots History -------- 201?.??.?? -fvj- created 2017.08.21 -jgr- changed some graphical aspects """ if (period1 > 0) and (period2 > 0): # TODO: document this and check (sometimes artefacts) value1 *= period1 / 3600.0 value1 = np.ma.cumsum(value1) value2 *= period2 / 3600.0 value2 = np.ma.cumsum(value2) fig, ax = plt.subplots(figsize=[10, 6.5], dpi=dpi) ax.plot(date1, value1, "b", label=label1, linestyle="--", marker="o") ax.plot(date2, value2, "r", label=label2, linestyle="--", marker="s") ax.legend(loc="best") ax.set_xlabel(labelx) ax.set_ylabel(labely) ax.set_title(titl) ax.grid() ax.set_ylim(bottom=ymin, top=ymax) ax.set_xlim([date2[0], date2[-1]]) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() # Make a tight layout fig.tight_layout() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list
[docs] def plot_monitoring_ts( date, np_t, cquant, lquant, hquant, field_name, fname_list, ref_value=None, vmin=None, vmax=None, np_min=0, labelx="Time [UTC]", labely="Value", titl="Time Series", dpi=72, plot_until_year_end=False, ): """ plots a time series of monitoring data Parameters ---------- date : datetime object time of the time series np_t : int array number of points cquant, lquant, hquant : float array values of the central, low and high quantiles field_name : str name of the field fname_list : list of str list of names of the files where to store the plot ref_value : float the reference value vmin, vmax : float The limits of the y axis np_min : int minimum number of points to consider the sample plotable labelx : str The label of the X axis labely : str The label of the Y axis titl : str The figure title dpi : int dots per inch plot_until_year_end : bool if true will always set the maximum xtick to the end of the year Returns ------- fname_list : list of str list of names of the created plots """ vmin_pyart, vmax_pyart = pyart.config.get_field_limits(field_name) if vmin is None: vmin = vmin_pyart if vmax is None: vmax = vmax_pyart # plot only valid data (but keep first and last date) date2 = np.array(date) isvalid = np.logical_not(np.ma.getmaskarray(cquant)) if np_min > 0: has_np = np_t > np_min isvalid = np.logical_and(isvalid, has_np) cquant_plt = cquant[isvalid] lquant_plt = lquant[isvalid] hquant_plt = hquant[isvalid] date_plt = date2[isvalid] if not isvalid[0]: cquant_plt = np.ma.append(np.ma.masked, cquant_plt) lquant_plt = np.ma.append(np.ma.masked, lquant_plt) hquant_plt = np.ma.append(np.ma.masked, hquant_plt) date_plt = np.ma.append(date2[0], date_plt) if not isvalid[-1]: cquant_plt = np.ma.append(cquant_plt, np.ma.masked) lquant_plt = np.ma.append(lquant_plt, np.ma.masked) hquant_plt = np.ma.append(hquant_plt, np.ma.masked) date_plt = np.ma.append(date_plt, date2[-1]) fig = plt.figure(figsize=[15, 13], dpi=dpi) ax = fig.add_subplot(2, 1, 1) ax.plot(date_plt, cquant_plt, "x-") ax.plot(date_plt, lquant_plt, "rx-") ax.plot(date_plt, hquant_plt, "rx-") if ref_value is not None: ax.plot(date_plt, np.zeros(len(date_plt)) + ref_value, "k--") ax.set_ylabel(labely) ax.set_title(titl) ax.set_ylim([vmin, vmax]) if plot_until_year_end: t0 = date_plt[0] tend = datetime.datetime(year=t0.year, month=12, day=31, hour=23, minute=59) ax.set_xlim([t0, tend]) else: # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) ax = fig.add_subplot(2, 1, 2) ax.plot(date, np_t, "x-") if np_min is not None: ax.plot(date, np.zeros(len(date)) + np_min, "k--") if plot_until_year_end: ax.set_xlim([t0, tend]) else: # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.set_ylabel("Number of Samples") ax.set_xlabel(labelx) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list
[docs] def plot_intercomp_scores_ts( date_vec, np_vec, meanbias_vec, medianbias_vec, quant25bias_vec, quant75bias_vec, modebias_vec, corr_vec, slope_vec, intercep_vec, intercep_slope1_vec, fname_list, ref_value=0.0, np_min=0, corr_min=0.0, labelx="Time UTC", titl="RADAR001-RADAR002 intercomparison", dpi=72, ): """ plots a time series of radar intercomparison scores Parameters ---------- date_vec : datetime object time of the time series np_vec : int array number of points meanbias_vec, medianbias_vec, modebias_vec : float array mean, median and mode bias quant25bias_vec, quant75bias_vec: 25th and 75th percentile of the bias corr_vec : float array correlation slope_vec, intercep_vec : float array slope and intercep of a linear regression intercep_slope1_vec : float the intercep point of a inear regression of slope 1 ref_value : float the reference value np_min : int The minimum number of points to consider the result valid corr_min : float The minimum correlation to consider the results valid labelx : str The label of the X axis titl : str The figure title Returns ------- fname_list : list of str list of names of the created plots """ # plot only valid data (but keep first and last date) date2 = np.array(date_vec) isvalid = np.logical_not(np.ma.getmaskarray(meanbias_vec)) isvalid_corr = np.logical_not(np.ma.getmaskarray(corr_vec)) if np_min > 0: has_np = np_vec > np_min isvalid = np.logical_and(isvalid, has_np) if corr_min > 0: has_corr_min = corr_vec > corr_min isvalid = np.logical_and(isvalid, has_corr_min) meanbias_plt = meanbias_vec[isvalid] medianbias_plt = medianbias_vec[isvalid] quant25bias_plt = quant25bias_vec[isvalid] quant75bias_plt = quant75bias_vec[isvalid] modebias_plt = modebias_vec[isvalid] intercep_plt = intercep_slope1_vec[isvalid] corr_plt = corr_vec[isvalid_corr] date_corr = date2[isvalid_corr] date_plt = date2[isvalid] if not isvalid[0]: meanbias_plt = np.ma.append(np.ma.masked, meanbias_plt) medianbias_plt = np.ma.append(np.ma.masked, medianbias_plt) quant25bias_plt = np.ma.append(np.ma.masked, quant25bias_plt) quant75bias_plt = np.ma.append(np.ma.masked, quant75bias_plt) modebias_plt = np.ma.append(np.ma.masked, modebias_plt) intercep_plt = np.ma.append(np.ma.masked, intercep_plt) date_plt = np.ma.append(date2[0], date_plt) if not isvalid[-1]: meanbias_plt = np.ma.append(meanbias_plt, np.ma.masked) medianbias_plt = np.ma.append(medianbias_plt, np.ma.masked) quant25bias_plt = np.ma.append(quant25bias_plt, np.ma.masked) quant75bias_plt = np.ma.append(quant75bias_plt, np.ma.masked) modebias_plt = np.ma.append(modebias_plt, np.ma.masked) intercep_plt = np.ma.append(intercep_plt, np.ma.masked) date_plt = np.ma.append(date_plt, date2[-1]) if not isvalid_corr[0]: corr_plt = np.ma.append(np.ma.masked, corr_plt) date_corr = np.ma.append(date2[0], date_corr) if not isvalid_corr[-1]: corr_plt = np.ma.append(corr_plt, np.ma.masked) date_corr = np.ma.append(date_corr, date2[-1]) fig = plt.figure(figsize=[10, 20], dpi=dpi) ax = fig.add_subplot(4, 1, 1) ax.plot(date_plt, medianbias_plt, "bx-", label="median") ax.plot(date_plt, meanbias_plt, "rx-", label="mean") ax.plot(date_plt, modebias_plt, "gx-", label="mode") ax.plot(date_plt, intercep_plt, "yx-", label="intercep of slope 1 LR") if ref_value is not None: ax.plot(date_plt, np.zeros(len(date_plt)) + ref_value, "k--") # plt.legend(loc='best') ax.set_ylabel("bias [dB]") ax.set_title(titl) ax.set_ylim([-5.0, 5.0]) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) ax = fig.add_subplot(4, 1, 2) ax.plot(date_plt, medianbias_plt, "bx-", label="median") ax.plot(date_plt, quant25bias_plt, "rx-", label="25-percentile") ax.plot(date_plt, quant75bias_plt, "rx-", label="75-percentile") if ref_value is not None: ax.plot(date_plt, np.zeros(len(date_plt)) + ref_value, "k--") # plt.legend(loc='best') ax.set_ylabel("bias [dB]") ax.set_ylim([-5.0, 5.0]) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) ax = fig.add_subplot(4, 1, 3) ax.plot(date_corr, corr_plt, "bx-") if corr_min > 0: ax.plot(date_corr, np.zeros(len(date_corr)) + corr_min, "k--") ax.set_ylabel("correlation") ax.set_ylim([0.0, 1.0]) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) ax = fig.add_subplot(4, 1, 4) ax.plot(date2, np_vec, "bx-") if np_min > 0: ax.plot(date2, np.zeros(len(date2)) + np_min, "k--") ax.set_ylabel("Number of Samples") ax.set_xlabel(labelx) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list
[docs] def plot_ml_ts( dt_ml_arr, ml_top_avg_arr, ml_top_std_arr, thick_avg_arr, thick_std_arr, nrays_valid_arr, nrays_total_arr, fname_list, labelx="Time UTC", titl="Melting layer time series", dpi=72, ): """ plots a time series of melting layer data Parameters ---------- dt_ml_arr : datetime object time of the time series np_vec : int array number of points meanbias_vec, medianbias_vec, modebias_vec : float array mean, median and mode bias quant25bias_vec, quant75bias_vec: 25th and 75th percentile of the bias corr_vec : float array correlation slope_vec, intercep_vec : float array slope and intercep of a linear regression intercep_slope1_vec : float the intercep point of a inear regression of slope 1 ref_value : float the reference value np_min : int The minimum number of points to consider the result valid corr_min : float The minimum correlation to consider the results valid labelx : str The label of the X axis titl : str The figure title Returns ------- fname_list : list of str list of names of the created plots """ fig = plt.figure(figsize=[10, 15], dpi=dpi) ax = fig.add_subplot(3, 1, 1) ax.plot(dt_ml_arr, ml_top_avg_arr, "bx-", label="avg") ax.plot(dt_ml_arr, ml_top_avg_arr + ml_top_std_arr, "rx-", label="avg+std") ax.plot(dt_ml_arr, ml_top_avg_arr - ml_top_std_arr, "rx-", label="avg-std") # plt.legend(loc='best') ax.set_ylabel("Top height [m MSL]") ax.set_title(titl) ax.set_ylim([0.0, 6000.0]) ax.set_xlim([dt_ml_arr[0], dt_ml_arr[-1]]) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) ax = fig.add_subplot(3, 1, 2) ax.plot(dt_ml_arr, thick_avg_arr, "bx-", label="avg") ax.plot(dt_ml_arr, thick_avg_arr + thick_std_arr, "rx-", label="avg+std") ax.plot(dt_ml_arr, thick_avg_arr - thick_std_arr, "rx-", label="avg-std") # plt.legend(loc='best') ax.set_ylabel("Thickness [m]") ax.set_ylim([0.0, 3000.0]) ax.set_xlim([dt_ml_arr[0], dt_ml_arr[-1]]) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) ax = fig.add_subplot(3, 1, 3) ax.plot(dt_ml_arr, nrays_valid_arr, "bx-", label="N valid rays") ax.plot(dt_ml_arr, nrays_total_arr, "rx-", label="rays total") # plt.legend(loc='best') ax.set_ylabel("Rays") ax.set_xlabel(labelx) ax.set_ylim([0, np.max(nrays_total_arr) + 5]) ax.set_xlim([dt_ml_arr[0], dt_ml_arr[-1]]) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list
[docs] def plot_sun_retrieval_ts( sun_retrieval, data_type, fname_list, labelx="Date", titl="Sun retrieval Time Series", dpi=72, ): """ plots sun retrieval time series series Parameters ---------- sun_retrieval : tuple tuple containing the retrieved parameters data_type : str parameter to be plotted fname_list : list of str list of names of the files where to store the plot labelx : str the x label titl : str the title of the plot dpi : int dots per inch Returns ------- fname_list : list of str list of names of the created plots """ value_std = None ref = None date = sun_retrieval[1] if data_type == "nhits_h": value = sun_retrieval[2] labely = "Number of sun hits H channel" vmin = 0 vmax = np.max(sun_retrieval[2]) + 1 elif data_type == "el_width_h": value = sun_retrieval[3] labely = "Elevation beamwidth H channel (Deg)" vmin = 0.0 vmax = 4.0 elif data_type == "az_width_h": value = sun_retrieval[4] labely = "Azimuth beamwidth H channel (Deg)" vmin = 0.0 vmax = 4.0 elif data_type == "el_bias_h": value = sun_retrieval[5] ref = np.zeros(len(value)) labely = "Elevation pointing bias H channel (Deg)" vmin = -2.0 vmax = 2.0 elif data_type == "az_bias_h": value = sun_retrieval[6] ref = np.zeros(len(value)) labely = "Azimuth pointing bias H channel (Deg)" vmin = -2.0 vmax = 2.0 elif data_type == "dBm_sun_est": value = sun_retrieval[7] value_std = sun_retrieval[8] labely = "Sun Power H channel (dBm)" vmin = -110.0 vmax = -90.0 elif data_type == "rx_bias_h": value = 10.0 * np.ma.log10(sun_retrieval[9]) - 10.0 * np.ma.log10( sun_retrieval[21] ) value_std = sun_retrieval[8] ref = np.zeros(len(value)) labely = "Receiver bias H channel (dB)" vmin = -5.0 vmax = 5.0 elif data_type == "sf_h": value = 10.0 * np.ma.log10(sun_retrieval[9]) # value_std = sun_retrieval[8] ref = 10.0 * np.ma.log10(sun_retrieval[21]) labely = "Observed solar flux H channel (dB(sfu))" vmin = 15.0 vmax = 30.0 elif data_type == "nhits_v": value = sun_retrieval[10] labely = "Number of sun hits V channel" vmin = 0 vmax = np.max(sun_retrieval[10]) + 1 elif data_type == "el_width_v": value = sun_retrieval[11] labely = "Elevation beamwidth V channel (Deg)" vmin = 0.0 vmax = 4.0 elif data_type == "az_width_v": value = sun_retrieval[12] labely = "Azimuth beamwidth V channel (Deg)" vmin = 0.0 vmax = 4.0 elif data_type == "el_bias_v": value = sun_retrieval[13] ref = np.zeros(len(value)) labely = "Elevation pointing bias V channel (Deg)" vmin = -2.0 vmax = 2.0 elif data_type == "az_bias_v": value = sun_retrieval[14] ref = np.zeros(len(value)) labely = "Azimuth pointing bias V channel (Deg)" vmin = -2.0 vmax = 2.0 elif data_type == "dBmv_sun_est": value = sun_retrieval[15] value_std = sun_retrieval[16] labely = "Sun Power V channel (dBm)" vmin = -110.0 vmax = -90.0 elif data_type == "rx_bias_v": value = 10.0 * np.ma.log10(sun_retrieval[17]) - 10.0 * np.ma.log10( sun_retrieval[21] ) value_std = sun_retrieval[16] ref = np.zeros(len(value)) labely = "Receiver bias V channel (dB)" vmin = -5.0 vmax = 5.0 elif data_type == "sf_v": value = 10.0 * np.ma.log10(sun_retrieval[17]) # value_std = sun_retrieval[16] ref = 10.0 * np.ma.log10(sun_retrieval[21]) labely = "Observed solar flux V channel (dB(sfu))" vmin = 15.0 vmax = 30.0 elif data_type == "nhits_zdr": value = sun_retrieval[18] labely = "Number of sun hits ZDR" vmin = 0 vmax = np.max(sun_retrieval[18]) + 1 elif data_type == "ZDR_sun_est": value = sun_retrieval[19] value_std = sun_retrieval[20] ref = np.zeros(len(value)) labely = "Sun ZDR (dB)" vmin = -2.0 vmax = 2.0 mask = np.ma.getmaskarray(value) if mask.all(): warn("Unable to create figure " + " ".join(fname_list) + ". No valid data") return None # plot only valid data (but keep first and last date) isvalid = np.logical_not(mask) date2 = np.array(date) value_plt = value[isvalid] date_plt = date2[isvalid] if not isvalid[0]: value_plt = np.ma.append(np.ma.masked, value_plt) date_plt = np.ma.append(date2[0], date_plt) if not isvalid[-1]: value_plt = np.ma.append(value_plt, np.ma.masked) date_plt = np.ma.append(date_plt, date2[-1]) fig, ax = plt.subplots(figsize=[10, 6], dpi=dpi) ax.plot(date_plt, value_plt, "x-") if value_std is not None: value_std_plt = value_std[isvalid] if not isvalid[0]: value_std_plt = np.ma.append(np.ma.masked, value_std_plt) if not isvalid[-1]: value_std_plt = np.ma.append(value_std_plt, np.ma.masked) ax.plot(date_plt, value_plt + value_std_plt, "rx-") ax.plot(date_plt, value_plt - value_std_plt, "rx-") if ref is not None: ref_plt = ref[isvalid] if not isvalid[0]: ref_plt = np.ma.append(ref[0], ref_plt) if not isvalid[-1]: ref_plt = np.ma.append(ref_plt, ref[-1]) ax.plot(date_plt, ref_plt, "k--") ax.set_xlabel(labelx) ax.set_ylabel(labely) ax.set_title(titl) ax.set_ylim([vmin, vmax]) ax.set_xlim([date_plt[0], date_plt[-1]]) # tight x axis ax.autoscale(enable=True, axis="x", tight=True) ax.grid(True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list