List of pyrad datasets separated by dataset type#

VOL#

ATTENUATION#

description

Computes specific attenuation and specific differential attenuation using the Z-Phi method and corrects reflectivity and differential reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBZc”, and,
“PhiDP” or “PhiDPc”, and,
“ZDR” or “ZDRc”, and
“TEMP” or “H_ISO0” (Optional)
ATT_METHODfloat. Dataset keyword
The attenuation estimation method used. One of the following:
ZPhi, Philin. Default ZPhi
fzlfloat. Dataset keyword
The default freezing level height. It will be used if no
temperature field name is specified or the temperature field is
not in the radar object. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used
to compute the freezing level, if no temperature field name is
specified, if the temperature field is in the radar object or if
no freezing_level is explicitely defined.
returns
new_datasetdict
dictionary containing the output fields “Ah” (spec. attenuation),
“PIA” (path-integrated attenuation) and “dBZc” (corr. refl.)

AZI_AVG#

description

Averages radar data in azimuth obtaining and RHI as a result

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
anglefloat or None. Dataset keyword
The center angle to average. If not set or set to -1 all
available azimuth angles will be used
delta_azifloat. Dataset keyword
The angle span to average. If not set or set to -1 all the
available azimuth angles will be used
avg_typestr. Dataset keyword
Average type. Can be mean or median. Default mean
nvalid_minint. Dataset keyword
the minimum number of valid points to consdier the average valid.
Default 1
lin_transdict or None
A dictionary specifying which data types have to be transformed
in linear units before averaging
returns
new_datasetdict
dictionary containing the gridded data

MOVING_AZI_AVG#

description

Applies a moving azimuthal average to the radar data

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
delta_azifloat. Dataset keyword
The angle span to average. Default 20
avg_typestr. Dataset keyword
Average type. Can be mean or median. Default mean
nvalid_minint. Dataset keyword
the minimum number of valid points to consdier the average valid.
Default 1
lin_transdict or None
A dictionary specifying which data types have to be transformed
in linear units before averaging
returns
new_datasetdict
dictionary containing the gridded data

BIAS_CORRECTION#

description

Corrects a bias on the data

[Source]

parameters
datatypestring. Dataset keyword
The data type to correct for bias, can be any datatype supported by pyrad
biasfloat. Dataset keyword
The bias to be corrected [dB]. Default 0
returns
new_datasetdict
dictionary containing the output field, it will contain
the corrected version of the provided datatypes
For example dBZ -> dBZc, ZDR -> ZDRc, RhoHV -> RhoHVc

BIRDS_ID#

description

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Birds

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must be
“dBZ” or “dBuZ”, and,
“ZDR” or “ZDRu”, and,
“RhoHV” or “uRhoHV”
returns
new_datasetdict
dictionary containing the output field “echoID”

BIRD_DENSITY#

description

Computes the bird density from the volumetric reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“eta_h” or “eta_v” (volumetric reflectivities)
sigma_birdfloat. Dataset keyword
The bird radar cross section
returns
new_datasetdict
dictionary containing the output field “bird_density”

CCOR#

description

Computes the Clutter Correction Ratio, i.e. the ratio between the signal without Doppler filtering and the signal with Doppler filtering

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBZv”, and,
“dBuZ”, or “dBuZV”
returns
new_datasetdict
dictionary containing the output field “CCORh” or
“CCORv” (if vertical reflectivities were provided)

CDF#

description

Collects the fields necessary to compute the Cumulative Distribution Function

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must be
“echoID” (if not provided, no clutter filtering is possible), and,
“hydro” (if not provided, no hydro filtering is possible), and,
“VIS” (if not provided no blocked gate filtering is possible), and,
any other field that will be used to compute CDF
returns
new_datasetdict
dictionary containing the output

CDR#

description

Computes approximation of Circular Depolarization Ratio

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“RhoHV” or “uRhoHV” or “RhoHVu”, and,
“ZDR” or “ZDRc”
returns
new_datasetdict
dictionary containing the output field “CDR”

CLT_TO_SAN#

description

Converts clutter exit code from rad4alp into pyrad echo ID

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must be “CLT”
returns
new_datasetdict
dictionary containing the output field “echoID”

ICON_LOOKUP#

description

Gets icon data and put it in radar coordinates using look up tables computed or loaded when initializing

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
lookup_tableint. Dataset keyword
if set a pre-computed look up table for the icon coordinates is
loaded. Otherwise the look up table is computed taking the first
radar object as reference
regular_gridint. Dataset keyword
if set it is assume that the radar has a grid constant in time and
therefore there is no need to interpolate the icon field in
memory to the current radar grid
icon_typestr. Dataset keyword
name of the icon field to process. Default TEMP
icon_variableslist of strings. Dataset keyword
Py-art name of the icon fields. Default temperature
returns
new_datasetdict
dictionary containing the output fields corresponding to icon_variables

DEM#

description

Gets DEM data and put it in radar coordinates

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
keep_in_memoryint. Dataset keyword
if set keeps the COSMO data dict, the COSMO coordinates dict and
the COSMO field in radar coordinates in memory. Default False
regular_gridint. Dataset keyword
if set it is assume that the radar has a grid constant in time and
there is no need to compute a new COSMO field if the COSMO
data has not changed. Default False
dem_fieldstr. Dataset keyword
name of the DEM field to process
demfilestr. Dataset keyword
Name of the file containing the DEM data
returns
new_datasetdict
dictionary containing the output field with name corresponding
to dem_field

DEALIAS_FOURDD#

description

Dealiases the Doppler velocity field using the 4DD technique from Curtis and Houze, 2001

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain
“V” or “Vc”
filtint. Dataset keyword
Flag controlling Bergen and Albers filter, 1 = yes, 0 = no.
signint. Dataset keyword
Sign convention which the radial velocities in the volume created
from the sounding data will will. This should match the
convention used in the radar data. A value of 1 represents when
positive values velocities are towards the radar, -1 represents
when negative velocities are towards the radar.
returns
new_datasetdict
dictionary containing the output field “dealV” or “dealVc” (if Vc was provided)

DEALIAS_REGION#

description

Dealiases the Doppler velocity field using a region based algorithm

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“V” or “Vc”
interval_splitsint, optional
Number of segments to split the nyquist interval into when finding
regions of similar velocity. More splits creates a larger number
of initial regions which takes longer to process but may result in
better dealiasing. The default value of 3 seems to be a good
compromise between performance and artifact free dealiasing. This
value is not used if the interval_limits parameter is not None.
skip_between_rays, skip_along_rayint, optional
Maximum number of filtered gates to skip over when joining
regions, gaps between region larger than this will not be
connected. Parameters specify the maximum number of filtered gates
between and along a ray. Set these parameters to 0 to disable
unfolding across filtered gates.
centeredbool, optional
True to apply centering to each sweep after the dealiasing
algorithm so that the average number of unfolding is near 0. False
does not apply centering which may results in individual sweeps
under or over folded by the nyquist interval.
nyquist_velfloat, optional
Nyquist velocity of the aquired radar velocity.
Usually this parameter is provided in the
Radar object intrument_parameters. If it is not available it can
be provided as a keyword here.
returns
new_datasetdict
dictionary containing the output field “dealV” or “dealVc” (if Vc was provided)

DEALIAS_UNWRAP#

description

Dealiases the Doppler velocity field using multi-dimensional phase unwrapping

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“V” or “Vc”
unwrap_unit{‘ray’, ‘sweep’, ‘volume’}, optional
Unit to unwrap independently. ‘ray’ will unwrap each ray
individually, ‘sweep’ each sweep, and ‘volume’ will unwrap the
entire volume in a single pass. ‘sweep’, the default, often gives
superior results when the lower sweeps of the radar volume are
contaminated by clutter. ‘ray’ does not use the gatefilter
parameter and rays where gates ared masked will result in poor
dealiasing for that ray.
returns
new_datasetdict
dictionary containing the output field “dealV” or “dealVc” (if Vc was provided)

DOPPLER_VELOCITY#

description

Compute the Doppler velocity from the spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“sdBZ” or “sdBZv” or “sdBuZ” or “sdBuZv”
returns
new_datasetdict
dictionary containing the output field
“V” if “sdBZ” was provided
“Vv” if “sdBZv” was provided
“Vu” if “sdBuZ” was provided

DOPPLER_VELOCITY_IQ#

description

Compute the Doppler velocity from the spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU” or “IQvvADU”
directionstr
The convention used in the Doppler mean field. Can be
negative_away or negative_towards
returns
new_datasetdict
dictionary containing the output field “V”
(if IQhhADU was provided) or “Vv” (if IQvvADU was provided)

DOPPLER_WIDTH#

description

Compute the Doppler spectrum width from the spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“sdBZ” or “sdBZv” or “sdBuZ” or “sdBuZv”
returns
new_datasetdict
dictionary containing the output field
“W” if “sdBZ” was provided
“Wv” if “sdBZv” was provided
“Wu” if “sdBuZ” was provided

DOPPLER_WIDTH_IQ#

description

Compute the Doppler spectrum width from the spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU” or “IQvvADU”
subtract_noiseBool
If True noise will be subtracted from the signals
lagint
Time lag used in the denominator of the computation
returns
new_datasetdict
dictionary containing the output field “W” (if IQhhADU was provided),
or “Wv” (if IQvvADU was provided)

ECHO_FILTER#

description

Masks all echo types that are not of the class specified in keyword echo_type

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must be
“echoID” at minimum, as well as any other fields
that will be echo filtered (e.g. dBZ, ZDR)
echo_typeint or list of ints
The type of echoes to keep: 1 noise, 2 clutter, 3 precipitation.
Default 3
returns
new_datasetdict
dictionary containing the output field, it will contain
the corrected version of the provided datatypes
For example dBZ -> dBZc, ZDR -> ZDRc, RhoHV -> RhoHVc

FIELDS_DIFF#

description

Computes the field difference between RADAR001 and radar002, i.e. RADAR001-RADAR002. Assumes both radars have the same geometry

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types for each radar,
Any datatype supported by pyrad is supported
returns
new_datasetdict
dictionary containing a radar object containing the field differences

FIXED_RNG#

description

Obtains radar data at a fixed range

[Source]

parameters
datatypelist of strings. Dataset keyword
The fields we want to extract
rngfloat. Dataset keyword
The fixed range [m]
RngTolfloat. Dataset keyword
The tolerance between the nominal range and the radar range
ele_min, ele_max, azi_min, azi_maxfloats. Dataset keyword
The azimuth and elevation limits of the data [deg]
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

FIXED_RNG_SPAN#

description

For each azimuth-elevation gets the data within a fixed range span and computes a user-defined statistic: mean, min, max, mode, median

[Source]

parameters
datatypelist of strings. Dataset keyword
The fields we want to extract
rmin, rmaxfloat. Dataset keyword
The range limits [m]
ele_min, ele_max, azi_min, azi_maxfloats. Dataset keyword
The azimuth and elevation limits of the data [deg]
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

GATEFILTER#

description

filters out all available moments based on specified upper/lower bounds for moments based on the Py-ART gatefilter. Every value below upper bound or above upper bound will be filtered. To ignore lower/upper bound enter an impossible value such as -9999 or 9999.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any any data type supported by
pyrad, the number of datatypes must match the lower and upper bounds
dimensions
lower_boundslist of float
The list of lower bounds for every input data type
upper_boundslist of float
The list of upper bounds for every input data type
returns
new_datasetdict
dictionary containing the output field, it will contain
the corrected version of the provided datatypes
For example dBZ -> dBZc, ZDR -> ZDRc, RhoHV -> RhoHVc

GECSX#

description

Computes ground clutter RCS, radar visibility and many others using the GECSX algorithmn translated from IDL into python

[Source]

parameters
datatypelist of string. Dataset keyword
arbitrary data type supported by pyrad
range_discretizationfloat. Dataset keyword
Range discretization used when computing the Cartesian visibility field
the larger the better but the slower the processing will be
az_discretizationfloat. Dataset keyword
Azimuth discretization used when computing the Cartesian visibility
field, the larger the better but the slower the processing will be
kefloat. Dataset keyword
Equivalent earth-radius factor used in the computation of the radar
beam refraction
atm_attfloat. Dataset keyword
One-way atmospheric refraction in db / km
mosotti_kwfloat. Dataset keyword
Clausius-Mosotti factor K, depends on material (water) and wavelength
for water = sqrt(0.93)
raster_oversamplingint. Dataset keyword
The raster resolution of the DEM should be smaller than
the range resolution of the radar (defined by the pulse length).
If this is not the case, this keyword can be set to increase the
raster resolution. The values for the elevation, sigma naught,
visibility are repeated. The other values are recalculated.
Values for raster_oversampling:
0 or undefined: No oversampling is done
1: Oversampling is done. The factor N is automatically calculated
such that 2*dx/N < pulse length
2 or larger: Oversampling is done with this value as N
sigma0_methodstring. Dataset keyword
Which estimation method to use, either ‘Gabella’ or ‘Delrieu’
clipint. Dataset keyword
If set to true, the provided DEM will be clipped to the extent
of the polar radar domain. Increases computation speed a lot but
Cartesian output fields will be available only over radar domain
returns
new_datasetlist of dict
list of dictionaries containing the polar data output and the
Cartesian data output in this order
The first dictionary (polar) contains the following fields:
“rcs_clutter”, “dBm_clutter”, “dBZ_clutter” and “visibility_polar”
The second dictionary (cart) contains the following fields:
“bent_terrain_altitude”, “terrain_slope”, “terrain_aspect”,
“elevation_angle”, “min_vis_elevation”, “min_vis_altitude”,
“incident_angle”, “sigma_0”, “effective_area”

HYDROCLASS#

description

Classifies precipitation echoes

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“RhoHV”, or “uRhoHV”, or “RhoHVc”, and,
“KDP”, or “KDPc”, and,
“TEMP” or “H_ISO0” (optional)
HYDRO_METHODstring. Dataset keyword
The hydrometeor classification method. One of the following:
SEMISUPERVISED, UKMO
centroids_filestring or None. Dataset keyword
Used with HYDRO_METHOD SEMISUPERVISED. The name of the .csv file
that stores the centroids. The path is given by
[configpath]/centroids_hydroclass/
If None is provided default centroids are going to be used
compute_entropybool. Dataset keyword
Used with HYDRO_METHOD SEMISUPERVISED. If true the entropy is
computed and the field hydroclass_entropy is output
output_distancesbool. Dataset keyword
Used with HYDRO_METHOD SEMISUPERVISED. If true the de-mixing
algorithm based on the distances to the centroids is computed and
the field proportions of each hydrometeor in the radar range gate
is output
vectorizebool. Dataset keyword
Used with HYDRO_METHOD SEMISUPERVISED. If true a vectorized
version of the algorithm is used
weightsarray of floats. Dataset keyword
Used with HYDRO_METHOD SEMISUPERVISED. The list of weights given
to each variable
hydropathstring. Dataset keyword
Used with HYDRO_METHOD UKMO. Directory of the UK MetOffice
hydrometeor classification code
mf_dirstring. Dataset keyword
Used with HYDRO_METHOD UKMO. Directory where the UK MetOffice
hydrometeor classification membership functions are stored
ml_depth: float. Dataset keyword
Used with HYDRO_METHOD UKMO. Depth of the melting layer [km].
Default 500.
perturb_ml_depth: float. Dataset keyword
Used with HYDRO_METHOD UKMO. if specified, the depth of the
melting layer can be varied by +/- this value [km], allowing a
less-rigidly defined melting layer. Default 0.
fzl: float or None. Dataset keyword
If desired, a single freezing level
height can be specified for the entire PPI domain. This will be used
only if no temperature field is available.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used to
compute the freezing level, if no temperature field name is specified,
if the temperature field is not in the radar object or if no
fzl is explicitely defined.
use_dualpol: Bool. Dataset keyword
Used with HYDRO_METHOD UKMO. If false no radar data is used and
the classification is performed using temperature information
only. Default True
use_temperature: Bool. Dataset keyword
Used with HYDRO_METHOD UKMO. If false no temperature information
is used and the classification is performed using radar data only.
Default True
use_interpolation: Bool. Dataset keyword
Used with HYDRO_METHOD UKMO. If True gaps in the classification
are filled using a nearest-neighbour interpolation. Default False
map_to_semisupervised: Bool. Dataset keyword
Used with HYDRO_METHOD UKMO. If True the output is map to the same
categories as the semi-supervised classification. Default True
append_all_fields: Bool. Dataset keyword
Used with HYDRO_METHOD UKMO. If True auxiliary fields such as
confidence and probability for each class are going to be added to
the output
returns
new_datasetdict
dictionary containing the output fields “hydro”, “entropy” (if compute_entropy is 1),
and “propAG”, “propCR”, “propLR”, “propRP”, “propRN”, “propVI”, “propWS”, “propMH”,
“propIH” (if output_distances is 1)

HZT#

description

Gets iso0 degree data in HZT format and put it in radar coordinates

[Source]

parameters
metranet_read_libstr. Global keyword
Type of METRANET reader library used to read the data.
Can be ‘C’ or ‘python’
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
keep_in_memoryint. Dataset keyword
if set keeps the icon data dict, the icon coordinates dict and
the icon field in radar coordinates in memory
regular_gridint. Dataset keyword
if set it is assume that the radar has a grid constant in time and
there is no need to compute a new icon field if the icon
data has not changed
icon_typestr. Dataset keyword
name of the icon field to process. Default TEMP
icon_variableslist of strings. Dataset keyword
Py-art name of the icon fields. Default temperature
returns
new_datasetdict
dictionary containing the output fields corresponding to
icon_variables

HZT_LOOKUP#

description

Gets HZT data and put it in radar coordinates using look up tables computed or loaded when initializing

[Source]

parameters
metranet_read_libstr. Global keyword
Type of METRANET reader library used to read the data.
Can be ‘C’ or ‘python’
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
lookup_tableint. Dataset keyword
if set a pre-computed look up table for the icon coordinates is
loaded. Otherwise the look up table is computed taking the first
radar object as reference
regular_gridint. Dataset keyword
if set it is assume that the radar has a grid constant in time and
therefore there is no need to interpolate the icon field in
memory to the current radar grid
returns
new_datasetdict
dictionary containing the output field HISO0

ISO0_GRIB#

description

Gets iso0 degree data in GRIB format and put it in radar coordinates. This function is meant to process data received from the MeteoFrance NWP model. It can output the height over the iso0 of each gate or the iso0 height at each gate

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
time_interpbool. Dataset keyword
whether to perform an interpolation in time between consecutive
model outputs. Default True
voltype: str. Dataset keyword
The type of data to output. Can be H_ISO0 or HZT. Default H_ISO0
returns
new_datasetdict
dictionary containing the output field H_ISO0

ISO0_MF#

description

Gets iso0 degree data in text format and put it in radar coordinates. This function is meant to process data received from the MeteoFrance NWP model. The model provides a maximum of 9 points at 0.5 degree lat/lon spacing surrounding a given radar. If a point is not provided it means that the iso0 for that point is at or below the ground level. Out of these points a single reference iso-0 is obtained according to the user defined iso0 statistic.

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by prad
iso0_statisticstr. Dataset keyword
The statistic used to weight the iso0 points. Can be avg_by_dist,
avg, min, max
returns
new_datasetdict
dictionary containing the output field “H_ISO0”

KDP_LEASTSQUARE_1W#

description

Computes specific differential phase using a piecewise least square method

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“PhiDP” or “PhiDPc” or “uPhiDP”
rwindfloat. Dataset keyword
The length of the segment for the least square method [m].
Default 6000.
vectorizebool. Dataset keyword
Whether to vectorize the KDP processing. Default false
returns
new_datasetdict
dictionary containing the output field “KDPc”

KDP_LEASTSQUARE_2W#

description

Computes specific differential phase using a piecewise least square method

[Source]

parameters
The input data types, must contain,
“PhiDP” or “PhiDPc” or “uPhiDP”, and,
“dBZ” or “dBZc”
rwindsfloat. Dataset keyword
The length of the short segment for the least square method [m].
Default 2000.
rwindlfloat. Dataset keyword
The length of the long segment for the least square method [m].
Default 6000.
Zthrfloat. Dataset keyword
The threshold defining which estimated data to use [dBZ]
vectorizeBool. Dataset keyword
Whether to vectorize the KDP processing. Default false
returns
new_datasetdict
dictionary containing the output field “KDPc”

KEEP_ROI#

description

keep only data within a region of interest and mask anything else

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
trtfilestr. Dataset keyword
TRT file from which to extract the region of interest
time_tolfloat. Dataset keyword
Time tolerance between the TRT file date and the nominal radar
volume time
lon_roi, lat_roifloat array. Dataset keyword
latitude and longitude positions defining a region of interest
alt_min, alt_maxfloat. Dataset keyword
Minimum and maximum altitude of the region of interest. Can be
None
cercleboolean. Dataset keyword
If True the region of interest is going to be defined as a cercle
centered at a particular point. Default False
lon_centre, lat_centreFloat. Dataset keyword
The position of the centre of the cercle. If None, that of the
radar will be used
rad_cercleFloat. Dataset keyword
The radius of the cercle in m. Default 1000.
res_cercleint. Dataset keyword
Number of points used to define a quarter of cercle. Default 16
boxboolean. Dataset keyword
If True the region of interest is going to be defined by a
rectangle
lon_point, lat pointFloat
The position of the point of rotation of the box. If None the
position of the radar is going to be used
rotationfloat
The angle of rotation. Positive is counterclockwise from North in
deg. Default 0.
we_offset, sn_offsetfloat
west-east and south-north offset from rotation position in m.
Default 0
we_length, sn_lengthfloat
west-east and south-north rectangle lengths in m. Default 1000.
originstr
origin of rotation. Can be center: center of the rectangle or
mid_south. East-west mid-point at the south of the rectangle.
Default center
use_latlonBool. Dataset keyword
If True the coordinates used to find the radar gates within the
ROI will be lat/lon. If false it will use Cartesian Coordinates
with origin the radar position. Default True
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

L#

description

Computes L parameter (logarithmic cross-correlation ratio)

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“RhoHV” or “RhoHVc” or “uRhoHV”
returns
new_datasetdict
dictionary containing the output field “L”

MEAN_PHASE_IQ#

description

Computes the mean phase from the horizontal or vertical IQ data

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU” or “IQvvADU”
returns
new_datasetdict
dictionary containing the output field “MPH” (mean_phase)

NCVOL#

description

Dummy function that allows to save the entire radar object

[Source]

parameters


returns
new_datasetdict
dictionary containing the output

NOISE_POWER#

description

Computes the noise power from the spectra

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“ShhADU” or “SvvADU” or “ShhADUu” or “SvvADUu”
unitsstr
The units of the returned signal. Can be ‘ADU’, ‘dBADU’ or ‘dBm’
navgint
Number of spectra averaged
rminint
Range from which the data is used to estimate the noise
nnoise_minint
Minimum number of samples to consider the estimated noise power
valid
returns
new_datasetdict
dictionary containing the output field
“NdBADUh” or “NdBADUv”, or
“NdBmh” or “NdBmv”, or
“Nh” or “Nv”
depending on which input datatype and units were provided

OUTLIER_FILTER#

description

filters out gates which are outliers respect to the surrounding

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any any data type supported by pyrad
thresholdfloat. Dataset keyword
The distance between the value of the examined range gate and the
median of the surrounding gates to consider the gate an outlier
nbint. Dataset keyword
The number of neighbours (to one side) to analyse. i.e. 2 would
correspond to 24 gates
nb_minint. Dataset keyword
Minimum number of neighbouring gates to consider the examined gate
valid
percentile_min, percentile_maxfloat. Dataset keyword
gates below (above) these percentiles (computed over the sweep) are
considered potential outliers and further examined
returns
new_datasetdict
dictionary containing the output, it will contain
the corrected version of the provided datatypes
For example dBZ -> dBZc, ZDR -> ZDRc, RhoHV -> RhoHVc

PHIDP0_CORRECTION#

description

corrects phidp of the system phase

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBZc”, and,
“PhiDP” or “PhiDPc” or “uPhiDP”
rminfloat. Dataset keyword
The minimum range where to look for valid data [m]. Default 1000.
rmaxfloat. Dataset keyword
The maximum range where to look for valid data [m]. Default 50000.
rcellfloat. Dataset keyword
The length of a continuous cell to consider it valid precip [m].
Default 1000.
Zminfloat. Dataset keyword
The minimum reflectivity [dBZ]. Default 20.
Zmaxfloat. Dataset keyword
The maximum reflectivity [dBZ]. Default 40.
returns
new_datasetdict
dictionary containing the output field “PhiDPc”

PHIDP0_ESTIMATE#

description

estimates the system differential phase offset at each ray

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“PhiDP” or “PhiDPc” or “uPhiDP”
rminfloat. Dataset keyword
The minimum range where to look for valid data [m]
rmaxfloat. Dataset keyword
The maximum range where to look for valid data [m]
rcellfloat. Dataset keyword
The length of a continuous cell to consider it valid precip [m]
Zminfloat. Dataset keyword
The minimum reflectivity [dBZ]
Zmaxfloat. Dataset keyword
The maximum reflectivity [dBZ]
returns
new_datasetdict
dictionary containing the output fields “PhiDP0” (system diff. phase) and
“PhiDP0_bin” (first gate diff. phase)

PHIDP_KDP_KALMAN#

description

Computes specific differential phase and differential phase using the Kalman filter as proposed by Schneebeli et al. The data is assumed to be clutter free and continous

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“PhiDP” or “PhiDPc” or “uPhiDP”
parallelboolean. Dataset keyword
if set use parallel computing
get_phidpboolean. Datset keyword
if set the PhiDP computed by integrating the resultant KDP is
added to the radar field
frequencyfloat. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
it will be assumed that the radar is C band
returns
new_datasetdict
dictionary containing the output field “PhiDPc” and “KDPc”

PHIDP_KDP_LP#

description

Estimates PhiDP and KDP using a linear programming algorithm. This method only retrieves data in rain (i.e. below the melting layer). The method has 3 steps: PhiDP unfolding (including clutter suppression), Processing PhiDP using the LP algorithm, Obtaining KDP by convoluting PhiDP with a Sobel window. Required inputs for the LP algorithm are PsiDP and reflectivity. RhoHV and SNR are used for the clutter suppression in the PhiDP unfolding step (note that SNR is used instead of Normalized Coherent Power used by the original algorithm). If they are not provided a gate_filter based on the values of reflectivity is used instead. Freezing level height can be retrieved from iso-0 or temperature fields, from radio sounding or set by the user.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBZc”, and,
“PhiDP” or “PhiDPc” or “uPhiDP”, and,
“RhoHV” or “RhoHVc”, (Optional, used when min_rhv is specified) and,
“SNRh” (Optional, used when min_snr is specified), and
“TEMP” or “H_ISO0” (Optional)
fzlfloat. Dataset keyword
The freezing level height [m]. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used
to compute the freezing level, if no temperature field name is
specified, if the temperature field is not in the radar object or
if no freezing_level is explicitely defined.
ml_thicknessfloat. Dataset keyword
The melting layer thickness in meters. Default 700.
beamwidthfloat. Dataset keyword
the antenna beamwidth [deg]. If None that of the keys
radar_beam_width_h or radar_beam_width_v in attribute
instrument_parameters of the radar object will be used. If the key
or the attribute are not present the beamwidth will be set to None
LP_solverstr.
The LP solver to use. Can be pyglpk, cvxopt, cylp, cylp_mp.
Default cvxopt
procint
Number of worker processes. Only used when LP_solver is cylp_mp.
Default 1
min_snr, min_rhvfloat
Minimum SNR and RhoHV. Used to filter out non-meteorological
echoes when performing the unfolding of the differential phase.
Default 10 and 0.6
sys_phasefloat
Default system differential phase offset in deg. Default 0.
overide_sys_phasebool
If True the dynamic sys_phase not computed and the default
sys_phase is used. If false a dynamic sys_phase is computed. If
no dynamic value is found the default sys_phase is used.
Default False
first_gate_syspint
First gate to use when determining the system differential phase
offset. Default 0
nowrapint or None
Gate number where to begin the phase unwrapping. None will unwrap
from gate 0. Default None
ncptsint
Minimum number of continuous valid PhiDP points. Segments below
this number or starting at a gate below this number are going to
be excluded from the unfolding. Default 2.
z_biasfloat
reflectivity bias. Default 0 dBZ
low_z, high_zfloat
mininum and maximum reflectivity values. Values beyond this range
are going to be set to this range limits. The modified
reflectivity is used in the LP algorithm. Default 10 and 53 dBZ
min_phidpfloat
minimum differential phase. PhiDP values below this threshold are
going to be set to the threshold values. The modified PhiDP is
used in the LP algorithm. Default 0.1 deg
docint
Number of gates to doc at the end of the ray. Used in the LP
algorithm. Default 0
self_constfloat
selfconsistency factor. Used in the LP algorithm. Default 60000
coeffloat
Exponent linking Z to KDP in selfconsistency. Used in the LP
algorithm. kdp = (10**(0.1z))**coef. Default 0.914
window_lenint
Length of Sobel Window applied to PhiDP field before computing
KDP. Default 35
returns
new_datasetdict
dictionary containing the output field “PhiDPc” and “KDPc”

PHIDP_KDP_VULPIANI#

description

Computes specific differential phase and differential phase using the method developed by Vulpiani et al. The data is assumed to be clutter free and monotonous

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“PhiDP” or “PhiDPc” or “uPhiDP”
rwindfloat. Dataset keyword
The length of the segment [m]. Default 2000.
n_iterint. Dataset keyword
number of iterations. Default 3.
interpboolean. Dataset keyword
if set non valid values are interpolated using neighbouring valid
values. Default 0 (False)
parallelboolean. Dataset keyword
if set use parallel computing. Default 1 (True)
get_phidpboolean. Datset keyword
if set the PhiDP computed by integrating the resultant KDP is
added to the radar field. Default 0 (False)
frequencyfloat. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
it will be assumed that the radar is C band
returns
new_datasetdict
dictionary containing the output field “PhiDPc” and “KDPc”

PHIDP_KDP_MAESAKA#

description

Estimates PhiDP and KDP using the method by Maesaka. This method only retrieves data in rain (i.e. below the melting layer)

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBZc”, and,
“PhiDP” or “PhiDPc” or “uPhiDP”, and
“TEMP” or “H_ISO0” (Optional)
rminfloat. Dataset keyword
The minimum range where to look for valid data [m]. Default 1000.
rmaxfloat. Dataset keyword
The maximum range where to look for valid data [m]. Default 50000.
rcellfloat. Dataset keyword
The length of a continuous cell to consider it valid precip [m].
Default 1000.
Zminfloat. Dataset keyword
The minimum reflectivity [dBZ]. Default 20
Zmaxfloat. Dataset keyword
The maximum reflectivity [dBZ]. Default 40
fzlfloat. Dataset keyword
The freezing level height [m]. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used
to compute the freezing level, if no temperature field name is
specified, if the temperature field isin the radar object or if no
freezing_level is explicitely defined.
ml_thicknessfloat. Dataset keyword
The melting layer thickness in meters. Default 700.
beamwidthfloat. Dataset keyword
the antenna beamwidth [deg]. If None that of the keys
radar_beam_width_h or radar_beam_width_v in attribute
instrument_parameters of the radar object will be used. If the key
or the attribute are not present the beamwidth will be set to None
returns
new_datasetdict
dictionary containing the output field “PhiDPc” and “KDPc”

PHIDP_SMOOTH_1W#

description

corrects phidp of the system phase and smoothes it using one window

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBZc”, and,
“PhiDP” or “PhiDPc” or “uPhiDP”
rminfloat. Dataset keyword
The minimum range where to look for valid data [m]. Default 1000.
rmaxfloat. Dataset keyword
The maximum range where to look for valid data [m]. Default 50000.
rcellfloat. Dataset keyword
The length of a continuous cell to consider it valid precip [m].
Default 1000.
rwindfloat. Dataset keyword
The length of the smoothing window [m]. Default 6000.
Zminfloat. Dataset keyword
The minimum reflectivity [dBZ]. Default 20.
Zmaxfloat. Dataset keyword
The maximum reflectivity [dBZ]. Default 40.
returns
new_datasetdict
dictionary containing the output field “PhiDPc”

PHIDP_SMOOTH_2W#

description

corrects phidp of the system phase and smoothes it using one window

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBZc”, and,
“PhiDP” or “PhiDPc” or “uPhiDP”
rminfloat. Dataset keyword
The minimum range where to look for valid data [m]
rmaxfloat. Dataset keyword
The maximum range where to look for valid data [m]
rcellfloat. Dataset keyword
The length of a continuous cell to consider it valid precip [m]
rwindsfloat. Dataset keyword
The length of the short smoothing window [m]
rwindlfloat. Dataset keyword
The length of the long smoothing window [m]
Zminfloat. Dataset keyword
The minimum reflectivity [dBZ]
Zmaxfloat. Dataset keyword
The maximum reflectivity [dBZ]
Zthrfloat. Dataset keyword
The threshold defining wich smoothed data to used [dBZ]
returns
new_datasetdict
dictionary containing the output field “PhiDPc”

POL_VARIABLES#

description

Computes the polarimetric variables from the complex spectra

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
either a combination of signal and noise
(“ShhADU” and “SvvADU”) or (“ShhADUu” and “SvvADUu”), and,
(“sNADUh” and “sNADUv”), or
the power signal
(“sPhhADU” and “sPvvADU”) or (“sPhhADUu” and “sPvvADUu”), and
(“sRhoHV” or “sRhoHVu”)
subtract_noiseBool
If True noise will be subtracted from the signal. Default False
smooth_windowint or None
Size of the moving Gaussian smoothing window. If none no smoothing
will be applied. Default None
variableslist of str
list of variables to compute. Default dBZ
returns
new_datasetdict
dictionary containing the all outputs fields, that correspond to the
specified “variables” keyword

POL_VARIABLES_IQ#

description

Computes the polarimetric variables from the IQ data

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU”, “IQvvADU”, “IQNADUh” and “IQNADUv”
subtract_noiseBool
If True noise will be subtracted from the signal
lagint
The time lag to use in the estimators
directionstr
The convention used in the Doppler mean field. Can be
negative_away or negative_towards
variableslist of str
list of variables to compute. Default dBZ
phase_offsetfloat. Dataset keyword
The system differential phase offset to remove
returns
new_datasetdict
dictionary containing the output fields corresponding to the specified
“variables”
“”

PWR#

description

Computes the signal power in dBm

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBuZ” or “dBZc” or “dBuZc” or “dBZv” or “dBuZv” or “dBuZvc”
mflossh, mflossvfloat. Dataset keyword
The matching filter losses of the horizontal (vertical) channel
[dB]. If None it will be obtained from the attribute
radar_calibration of the radar object. Defaults to 0
radconsth, radconstvfloat. Dataset keyword
The horizontal (vertical) channel radar constant. If None it will
be obtained from the attribute radar_calibration of the radar
object
lrxh, lrxvfloat. Global keyword
The horizontal (vertical) receiver losses from the antenna feed to
the reference point. [dB] positive value. Default 0
lradomeh, lradomevfloat. Global keyword
The 1-way dry radome horizontal (vertical) channel losses.
[dB] positive value. Default 0.
attgfloat. Dataset keyword
The gas attenuation [dB/km]. If none it will be obtained from the
attribute radar_calibration of the radar object or assigned
according to the radar frequency. Defaults to 0.
returns
new_datasetdict
dictionary containing the output field “dBm” or “dBmv” (if
vert. refl. was provided)

RADAR_RESAMPLING#

description

Resamples the radar data to mimic another radar with different geometry and antenna pattern

[Source]

parameters


returns
new_datasetdict
dictionary containing the new radar

RADIAL_NOISE_HS#

description

Computes the radial noise from the signal power using the Hildebrand and Sekhon 1974 method

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“dBm” or “dBmv”
rminfloat. Dataset keyword
The minimum range from which to start the computation
nbins_minint. Dataset keyword
The minimum number of noisy gates to consider the estimation valid
max_std_pwrfloat. Dataset keyword
The maximum standard deviation of the noise power to consider the
estimation valid
get_noise_posbool. Dataset keyword
If True a field flagging the position of the noisy gets will be
returned
returns
new_datasetdict
dictionary containing the output field “NdBmh” and “noise_pos_h” or
“NdBmh” and “noise_pos_v” (if vert. refl. were provided)

RADIAL_NOISE_IVIC#

description

Computes the radial noise from the signal power using the Ivic 2013 method

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“dBm” or “dBmv”
npulses_rayint
Default number of pulses used in the computation of the ray. If
the number of pulses is not in radar.instrument_parameters this
will be used instead. Default 30
ngates_min: int
minimum number of gates with noise to consider the retrieval
valid. Default 800
iterations: int
number of iterations in step 7. Default 10.
get_noise_posbool
If true an additional field with gates containing noise according
to the algorithm is produced
returns
new_datasetdict
dictionary containing the output field “NdBmh” and “noise_pos_h” or
“NdBmh” and “noise_pos_v” (if vert. refl. were provided)

RADIAL_VELOCITY#

description

Estimates the radial velocity respect to the radar from the wind velocity

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain
WIND_SPEED, and,
WIND_DIRECTION, and,
wind_vel_v
latitude, longitudefloat
arbitrary coordinates [deg] from where to compute the radial
velocity. If any of them is None it will be the radar position
altitudefloat
arbitrary altitude [m MSL] from where to compute the radial
velocity. If None it will be the radar altitude
returns
new_datasetdict
dictionary containing the output field “V”

RAINRATE#

description

Estimates rainfall rate from polarimetric moments

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
If RR_METHOD == “Z” or “ZPoly”:
“dBZ” or “dBZc”
If RR_METHOD == “KDP”:
“KDP” or “KDPc”
If RR_METHOD == “A”:
“Ah” or “Ahc”
If RR_METHOD == “ZKDP”:
“dBZ” or “dBZc”, and,
“KDP” or “KDPc”
IF RR_METHOD == “ZA”:
“dBZ” or “dBZc”, and,
“Ah” or “Ahc”
IF RR_METHID == “hydro”:
“dBZ” or “dBZc”, and,
“Ah” or “Ahc”, and,
“hydro”
RR_METHODstring. Dataset keyword
The rainfall rate estimation method. One of the following:
Z, ZPoly, KDP, A, ZKDP, ZA, hydro
alpha, betafloat
factor and exponent of the R-Var power law R = alpha*Var^Beta.
Default value depending on RR_METHOD. Z (0.0376, 0.6112),
KDP (None, None), A (None, None)
alphaz, betazfloat
factor and exponent of the R-Z power law R = alpha*Z^Beta.
Default value (0.0376, 0.6112)
alphazr, betazrfloat
factor and exponent of the R-Z power law R = alpha*Z^Beta applied
to rain in method hydro. Default value (0.0376, 0.6112)
alphazs, betazsfloat
factor and exponent of the R-Z power law R = alpha*Z^Beta applied
to solid precipitation in method hydro. Default value (0.1, 0.5)
alphakdp, betakdpfloat
factor and exponent of the R-KDP power law R = alpha*KDP^Beta.
Default value (None, None)
alphaa, betaafloat
factor and exponent of the R-Ah power law R = alpha*Ah^Beta.
Default value (None, None)
threshfloat
In hybrid methods, Rainfall rate threshold at which the retrieval
method used changes [mm/h]. Default value depending on RR_METHOD.
ZKDP 10, ZA 10, hydro 10
mp_factorfloat
Factor by which the Z-R relation is multiplied in the melting layer
in method hydro. Default 0.6
returns
new_datasetdict
dictionary containing the output field “RR” (rain rate)

RAW#

description

Dummy function that returns the initial input data set

[Source]

parameters


returns
new_datasetdict
dictionary containing the output

REFLECTIVITY#

description

Computes reflectivity from the spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“sdBZ” or sdBZv” or “sdBuZ” or “sdBuZv”
returns
new_datasetdict
dictionary containing the output field “dBZ”, “dBZv”,
“dBuZ” or “dBuZv” depending on the provided input datatype

REFLECTIVITY_IQ#

description

Computes reflectivity from the IQ data

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU” or “IQvvADU”, and,
“IQNADUh” or “IQNADUv”
subtract_noiseBool
If True noise will be subtracted from the signal
returns
new_datasetdict
dictionary containing the output field
“dBZ” if “IQhhADU” and “IQNADUh” are specified
“dBZv” if “IQvvADU” and “IQNADUv” are specified

RCS#

description

Computes the radar cross-section (assuming a point target) from radar reflectivity.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBuZ” or “dBZc” or “dBuZc” or “dBZv” or “dBuZv” or “dBuZvc”
kw2float. Dataset keyowrd
The water constant
pulse_widthfloat. Dataset keyowrd
The pulse width [s]
beamwidthvfloat. Global keyword
The vertical polarization antenna beamwidth [deg]. Used if input
is vertical reflectivity
beamwidthhfloat. Global keyword
The horizontal polarization antenna beamwidth [deg]. Used if input
is horizontal reflectivity
returns
new_datasetdict
dictionary containing the output field “rcs_h” or “rcs_v” (if vert. refl. were
provided)

RCS_PR#

description

Computes the radar cross-section (assuming a point target) from radar reflectivity by first computing the received power and then the RCS from it.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ” or “dBuZ” or “dBZc” or “dBuZc” or “dBZv” or “dBuZv” or “dBuZvc”
AntennaGainH, AntennaGainVfloat. Dataset keyword
The horizontal (vertical) polarization antenna gain [dB]. If None
it will be obtained from the attribute instrument_parameters of
the radar object
txpwrh, txpwrvfloat. Dataset keyword
The transmitted power of the horizontal (vertical) channel [dBm].
If None it will be obtained from the attribute radar_calibration
of the radar object
mflossh, mflossvfloat. Dataset keyword
The matching filter losses of the horizontal (vertical) channel
[dB]. If None it will be obtained from the attribute
radar_calibration of the radar object. Defaults to 0
radconsth, radconstvfloat. Dataset keyword
The horizontal (vertical) channel radar constant. If None it will
be obtained from the attribute radar_calibration of the radar
object
lrxh, lrxvfloat. Global keyword
The horizontal (vertical) receiver losses from the antenna feed to
the reference point. [dB] positive value. Default 0
ltxh, ltxvfloat. Global keyword
The horizontal (vertical) transmitter losses from the output of the
high power amplifier to the antenna feed. [dB] positive value.
Default 0
lradomeh, lradomevfloat. Global keyword
The 1-way dry radome horizontal (vertical) channel losses.
[dB] positive value. Default 0.
attgfloat. Dataset keyword
The gas attenuation [dB/km]. If none it will be obtained from the
attribute radar_calibration of the radar object or assigned
according to the radar frequency. Defaults to 0.
returns
new_datasetdict
dictionary containing the output field “rcs_h” or “rcs_v” (if vert. refl. were
provided)

RHOHV_CORRECTION#

description

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Precipitation

[Source]

parameters
datatypelist of string. Dataset keyword
The data types used in the correction, it must contain
“uRhoHV”, and,
“SNRh”, and,
“ZDRc”, and,
“Nh”, and,
“Nv”
returns
new_datasetdict
dictionary containing the output field “RhoHV”

RHOHV_RAIN#

description

Keeps only suitable data to evaluate the 80 percentile of RhoHV in rain

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“RhoHV” or “RhoHVc” or “uRhoHV”, and,
“dBZ” or “dBZc”, and
“TEMP” (Optional), or
“H_ISO0” (Optional)
rminfloat. Dataset keyword
minimum range where to look for rain [m]. Default 1000.
rmaxfloat. Dataset keyword
maximum range where to look for rain [m]. Default 50000.
Zminfloat. Dataset keyword
minimum reflectivity to consider the bin as precipitation [dBZ].
Default 20.
Zmaxfloat. Dataset keyword
maximum reflectivity to consider the bin as precipitation [dBZ]
Default 40.
ml_thicknessfloat. Dataset keyword
assumed thickness of the melting layer. Default 700.
fzlfloat. Dataset keyword
The default freezing level height. It will be used if no
temperature field name is specified or the temperature field is
not in the radar object. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used to
compute the freezing level, if no temperature field name is specified,
if the temperature field isin the radar object or if no freezing_level
is explicitely defined.
returns
new_datasetdict
dictionary containing the output field “RhoHV_rain” (RhoHV in rain)

ROI#

description

Obtains the radar data at a region of interest defined by a TRT file or by the user.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
trtfilestr. Dataset keyword
TRT file from which to extract the region of interest
time_tolfloat. Dataset keyword
Time tolerance between the TRT file date and the nominal radar
volume time
lon_roi, lat_roifloat array. Dataset keyword
latitude and longitude positions defining a region of interest
alt_min, alt_maxfloat. Dataset keyword
Minimum and maximum altitude of the region of interest. Can be
None
cercleboolean. Dataset keyword
If True the region of interest is going to be defined as a cercle
centered at a particular point. Default False
lon_centre, lat_centreFloat. Dataset keyword
The position of the centre of the cercle
rad_cercleFloat. Dataset keyword
The radius of the cercle in m. Default 1000.
res_cercleint. Dataset keyword
Number of points used to define a quarter of cercle. Default 16
lon_point, lat pointFloat
The position of the point of rotation of the box. If None the
position of the radar is going to be used
rotationfloat
The angle of rotation. Positive is counterclockwise from North in
deg. Default 0.
we_offset, sn_offsetfloat
west-east and south-north offset from rotation position in m.
Default 0
we_length, sn_lengthfloat
west-east and south-north rectangle lengths in m. Default 1000.
originstr
origin of rotation. Can be center: center of the rectangle or
mid_south. East-west mid-point at the south of the rectangle.
Default center
use_latlonBool. Dataset keyword
If True the coordinates used to find the radar gates within the
ROI will be lat/lon. If false it will use Cartesian Coordinates
with origin the radar position. Default True
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

ROI2#

description

Obtains the radar data at a region of interest defined by a TRT file or by the user. More information is kept

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
trtfilestr. Dataset keyword
TRT file from which to extract the region of interest
time_tolfloat. Dataset keyword
Time tolerance between the TRT file date and the nominal radar
volume time
lon_roi, lat_roifloat array. Dataset keyword
latitude and longitude positions defining a region of interest
alt_min, alt_maxfloat. Dataset keyword
Minimum and maximum altitude of the region of interest. Can be
None
cercleboolean. Dataset keyword
If True the region of interest is going to be defined as a cercle
centered at a particular point. Default False
lon_centre, lat_centreFloat. Dataset keyword
The position of the centre of the cercle
rad_cercleFloat. Dataset keyword
The radius of the cercle in m. Default 1000.
res_cercleint. Dataset keyword
Number of points used to define a quarter of cercle. Default 16
boxboolean. Dataset keyword
If True the region of interest is going to be defined by a
rectangle
lon_point, lat pointFloat
The position of the point of rotation of the box. If None the
position of the radar is going to be used
rotationfloat
The angle of rotation. Positive is counterclockwise from North in
deg. Default 0.
we_offset, sn_offsetfloat
west-east and south-north offset from rotation position in m.
Default 0
we_length, sn_lengthfloat
west-east and south-north rectangle lengths in m. Default 1000.
originstr
origin of rotation. Can be center: center of the rectangle or
mid_south. East-west mid-point at the south of the rectangle.
Default center
use_latlonBool. Dataset keyword
If True the coordinates used to find the radar gates within the
ROI will be lat/lon. If false it will use Cartesian Coordinates
with origin the radar position. Default True
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

SAN#

description

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Precipitation

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must be
“dBZ” or “dBuZ”, and,
“ZDR” or “ZDRu”, and,
“RhoHV” or “uRhoHV”, and,
“PhiDP” or “uPhiDP”
wind_sizeint
Size of the moving window used to compute the ray texture
(number of gates). Default 7
max_textphi, max_textrhv, max_textzdr, max_textreflfloat
Maximum value for the texture of the differential phase, texture
of RhoHV, texture of Zdr and texture of reflectivity. Gates in
these. Default 20, 0.3, 2.85, 8
min_rhvfloat
Minimum value for the RhoHV. Default 0.6
returns
new_datasetdict
dictionary containing the output field “echoID”

SELFCONSISTENCY_BIAS#

description

Estimates the reflectivity bias by means of the selfconsistency algorithm by Gourley

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“PhiDP” or “PhiDPc”, and,
“uRhoHV” or “RhoHV” or “RhoHVc”, and,
“TEMP” (Optional), and,
“H_ISO0” (Optional), and,
“hydro” (Optional, only used if filter_rain)
parametrizationstr
The type of parametrization for the self-consistency curves. Can
be ‘None’, ‘Gourley’, ‘Wolfensberger’, ‘Louf’, ‘Gorgucci’ or
‘Vaccarono’
‘None’ will use tables from config files. Default ‘None’.
fzlfloat. Dataset keyword
Default freezing level height. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used to
compute the freezing level, if no temperature field name is specified,
if the temperature field isin the radar object or if no freezing_level
is explicitely defined.
rsmoothfloat. Dataset keyword
length of the smoothing window [m]. Default 2000.
min_rhohvfloat. Dataset keyword
minimum valid RhoHV. Default 0.92
filter_rainBool. Dataset keyword
If True the hydrometeor classification is used to filter out gates
that are not rain. Default True
max_phidpfloat. Dataset keyword
maximum valid PhiDP [deg]. Default 20.
ml_thicknessfloat. Dataset keyword
Melting layer thickness [m]. Default 700.
rcellfloat. Dataset keyword
length of continuous precipitation to consider the precipitation
cell a valid phidp segment [m]. Default 15000.
dphidp_minfloat. Dataset keyword
minimum phase shift [deg]. Default 2.
dphidp_maxfloat. Dataset keyword
maximum phase shift [deg]. Default 16.
frequencyfloat. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the selfconsistency will not be computed
check_wet_radomeBool. Dataset keyword
if True the average reflectivity of the closest gates to the radar
is going to be check to find out whether there is rain over the
radome. If there is rain no bias will be computed. Default True.
wet_radome_reflFloat. Dataset keyword
Average reflectivity [dBZ] of the gates close to the radar to
consider the radome as wet. Default 25.
wet_radome_rng_min, wet_radome_rng_maxFloat. Dataset keyword
Min and max range [m] of the disk around the radar used to compute
the average reflectivity to determine whether the radome is wet.
Default 2000 and 4000.
wet_radome_ngates_minint
Minimum number of valid gates to consider that the radome is wet.
Default 180
valid_gates_onlyBool
If True the reflectivity bias obtained for each valid ray is going
to be assigned only to gates of the segment used. That will give
more weight to longer segments when computing the total bias.
Default False
keep_pointsBool
If True the ZDR, ZH and KDP of the gates used in the self-
consistency algorithm are going to be stored for further analysis.
Default False
rkdpfloat
The length of the window used to compute KDP with the single
window least square method [m]. Default 6000.
returns
new_datasetdict
dictionary containing the output field “dBZ_bias” (refl. bias)

SELFCONSISTENCY_BIAS2#

description

Estimates the reflectivity bias by means of the selfconsistency algorithm by Gourley

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“PhiDP” or “PhiDPc”, and,
“uRhoHV” or “RhoHV” or “RhoHVc”, and,
“TEMP” (Optional), and,
“H_ISO0” (Optional), and,
“hydro” (Optional, only used if filter_rain)
parametrizationstr
The type of parametrization for the self-consistency curves. Can
be ‘None’, ‘Gourley’, ‘Wolfensberger’, ‘Louf’, ‘Gorgucci’ or
‘Vaccarono’
‘None’ will use tables from config files. Default ‘None’.
fzlfloat. Dataset keyword
Default freezing level height. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used to
compute the freezing level, if no temperature field name is specified,
if the temperature field isin the radar object or if no freezing_level
is explicitely defined.
rsmoothfloat. Dataset keyword
length of the smoothing window [m]. Default 2000.
min_rhohvfloat. Dataset keyword
minimum valid RhoHV. Default 0.92
filter_rainBool. Dataset keyword
If True the hydrometeor classification is used to filter out gates
that are not rain. Default True
max_phidpfloat. Dataset keyword
maximum valid PhiDP [deg]. Default 20.
ml_thicknessfloat. Dataset keyword
Melting layer thickness [m]. Default 700.
rcellfloat. Dataset keyword
length of continuous precipitation to consider the precipitation
cell a valid phidp segment [m]. Default 15000.
frequencyfloat. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the selfconsistency will not be computed
check_wet_radomeBool. Dataset keyword
if True the average reflectivity of the closest gates to the radar
is going to be check to find out whether there is rain over the
radome. If there is rain no bias will be computed. Default True.
wet_radome_reflFloat. Dataset keyword
Average reflectivity [dBZ] of the gates close to the radar to
consider the radome as wet. Default 25.
wet_radome_rng_min, wet_radome_rng_maxFloat. Dataset keyword
Min and max range [m] of the disk around the radar used to compute
the average reflectivity to determine whether the radome is wet.
Default 2000 and 4000.
wet_radome_ngates_minint
Minimum number of valid gates to consider that the radome is wet.
Default 180
keep_pointsBool
If True the ZDR, ZH and KDP of the gates used in the self-
consistency algorithm are going to be stored for further analysis.
Default False
bias_per_gateBool
If True the bias per gate will be computed
returns
new_datasetdict
dictionary containing the output field “dBZ_bias” (refl. bias)

SELFCONSISTENCY_KDP_PHIDP#

description

Computes specific differential phase and differential phase in rain using the selfconsistency between Zdr, Zh and KDP

[Source]

parameters
datatypelist of strings. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“PhiDP” or “PhiDPc”, and,
“uRhoHV” or “RhoHV” or “RhoHVc”, and,
“TEMP” (Optional), and,
“H_ISO0” (Optional), and,
“hydro” (Optional, only used if filter_rain)
parametrizationstr
The type of parametrization for the self-consistency curves. Can
be ‘None’, ‘Gourley’, ‘Wolfensberger’, ‘Louf’, ‘Gorgucci’ or
‘Vaccarono’
‘None’ will use tables from config files. Default ‘None’.
rsmoothfloat. Dataset keyword
length of the smoothing window [m]. Default 2000.
min_rhohvfloat. Dataset keyword
minimum valid RhoHV. Default 0.92
filter_rainBool. Dataset keyword
If True the hydrometeor classification is used to filter out gates
that are not rain. Default True
max_phidpfloat. Dataset keyword
maximum valid PhiDP [deg]. Default 20.
ml_thicknessfloat. Dataset keyword
assumed melting layer thickness [m]. Default 700.
fzlfloat. Dataset keyword
The default freezing level height. It will be used if no
temperature field name is specified or the temperature field is
not in the radar object. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used to
compute the freezing level, if no temperature field name is specified,
if the temperature field isin the radar object or if no freezing_level
is explicitely defined.
frequencyfloat. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the selfconsistency will not be computed
returns
new_datasetdict
dictionary containing the output fields KDP and PhiDP
“”

SNR#

description

Computes SNR

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“dBZ” or “dBuZ” or “dBZv” or “dBuZv”, and,
“Nh” or “Nv”
output_typestring. Dataset keyword
The output data type. Either SNRh or SNRv
returns
new_datasetdict
dictionary containing the output field “SNRh” or “SNRv” (if vert.
refl. were provided)

SNR_FILTER#

description

filters out low SNR echoes

[Source]

parameters
datatypelist of string. Dataset keyword
The input data typesm, must contain
“SNRh”, “SNRv”, “SNR” or “CNR” as well
as any other datatype supported by pyrad that
will be SNR filtered.
SNRminfloat. Dataset keyword
The minimum SNR to keep the data.
returns
new_datasetdict
dictionary containing the output field, it will contain
the corrected version of the provided datatypes
For example dBZ -> dBZc, ZDR -> ZDRc, RhoHV -> RhoHVc

ST1_IQ#

description

Computes the statistical test one lag fluctuation from the horizontal or vertical IQ data

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU” or “IQvvADU”
returns
new_datasetdict
dictionary containing the output field “ST1” (stat_test_lag1)

ST2_IQ#

description

Computes the statistical test two lag fluctuation from the horizontal or vertical IQ data

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU” or “IQvvADU”
returns
new_datasetdict
dictionary containing the output field “ST2”

TRAJ_TRT#

description

Processes data according to TRT trajectory

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any datatype supported by pyrad
and available in the radar data
time_tolfloat. Dataset keyword
tolerance between reference time of the radar volume and that of
the TRT cell [s]. Default 100.
alt_min, alt_maxfloat. Dataset keyword
Minimum and maximum altitude of the data inside the TRT cell to
retrieve [m MSL]. Default None
cell_centerBool. Dataset keyword
If True only the range gate closest to the center of the cell is
extracted. Default False
latlon_tolFloat. Dataset keyword
Tolerance in lat/lon when extracting data only from the center of
the TRT cell. Default 0.01
returns
new_datasetdictionary
Dictionary containing radar_out, a radar object containing only data
from inside the TRT cell

TRAJ_TRT_CONTOUR#

description

Gets the TRT cell contour corresponding to each radar volume

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any datatype supported by pyrad
and available in the radar data
time_tolfloat. Dataset keyword
tolerance between reference time of the radar volume and that of
the TRT cell [s]. Default 100.
returns
new_datasetdict
Dictionary containing radar_out and roi_dict. Radar out is the current
radar object. roi_dict contains the positions defining the TRT cell
contour

TURBULENCE#

description

Computes turbulence from the Doppler spectrum width and reflectivity using the PyTDA package

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“dBuZ” or “dBZ” or “dBZc” or “dBuZv” or “dBZv” or “dBZvc” or “CNRc”, and,
“W” or “Wv” or “Wu” or “Wvu” or “WD” or “WDc”
radiusfloat. Dataset keyword
Search radius for calculating Eddy Dissipation Rate (EDR).
Default 2
split_cutBool. Dataset keyword
Set to True for split-cut volumes. Default False
max_split_cutInt. Dataset keyword
Total number of tilts that are affected by split cuts. Only
relevant if split_cut=True. Default 2
xran, yranfloat array. Dataset keyword
Spatial range in X,Y to consider. Default [-100, 100] for both
X and Y
use_ntdaBool. Dataset keyword
Wether to use NCAR Turbulence Detection Algorithm (NTDA). Default
True
beamwidthFloat. Dataset keyword
Radar beamwidth. Default None. If None it will be obtained from
the radar object metadata. If cannot be obtained defaults to 1
deg.
compute_gate_posBool. Dataset keyword
If True the gate position is going to be computed in PyTDA.
Otherwise the position from the radar object is used. Default
False
verboseBool. Dataset keyword
True for verbose output. Default False
returns
new_datasetdict
dictionary containing the output field “EDR”

VAD#

description

Estimates vertical wind profile using the VAD (velocity Azimuth Display) technique

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain
“V” or “Vc”
returns
new_datasetdict
dictionary containing the output fields
“wind_vel_h_u”, “wind_vel_h_v”, “wind_vel_v”,
“estV”, “stdV”, and “diffV”

VEL_FILTER#

description

filters out range gates that could not be used for Doppler velocity estimation

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“diffV”, as well
as any other datatype supported by pyrad that
will be filtered where no Doppler velocity could be estimated.
returns
new_datasetdict
dictionary containing the output field, it will contain
the corrected version of the provided datatypes
For example dBZ -> dBZc, ZDR -> ZDRc, RhoHV -> RhoHVc

VIS#

description

Gets the visibility in percentage from the minimum visible elevation. Anything with elevation lower than the minimum visible elevation plus and offset is set to 0 while above is set to 100.

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
offsetfloat. Dataset keyword
The offset above the minimum visibility that must be filtered
returns
new_datasetdict
dictionary containing the output field
“visibility”

VIS_FILTER#

description

filters out rays gates with low visibility and corrects the reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data typesm, must contain
“VIS” or “visibility_polar”, as well
as any other datatype supported by pyrad that
will be filtered where the visibility is poor.
VISminfloat. Dataset keyword
The minimum visibility to keep the data.
returns
new_datasetdict
dictionary containing the output, it will contain
the corrected version of the provided datatypes
For example dBZ -> dBZc, ZDR -> ZDRc, RhoHV -> RhoHVc

VOL_REFL#

description

Computes the volumetric reflectivity eta in 10log10(cm^2 km^-3)

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“dBZ”, “dBuZ”, “dBZc”, “dBuZc”, “dBZv”, “dBZvc” “dBuZv”, or “dBuZvc”
freqfloat. Dataset keyword
The radar frequency
kwfloat. Dataset keyword
The water constant
returns
new_datasetdict
dictionary containing the output field “eta_h” or “eta_v” (if vert. refl. were
provided)

VOL2BIRD_FILTER#

description

Masks all echo types that have been identified as non-biological by vol2bird

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“VOL2BIRD_CLASS”, as well
as any other datatype supported by pyrad that
will be filtered where vol2bird detected non-biological echoes
returns
new_datasetdict
dictionary containing the output

VOL2BIRD_GATE_FILTER#

description

Adds filter on range gate values to the vol2bird filter

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“VOL2BIRD_CLASS”, and,
“dBZ” or “dBZc”, and,
“V” or “Vc”
dBZ_maxfloat
Maximum reflectivity of biological scatterers
V_minfloat
Minimum Doppler velocity of biological scatterers
returns
new_datasetdict
dictionary containing the output

VSTATUS_TO_SAN#

description

Converts velocity status from lidar data into pyrad echo ID

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must be “wind_vel_rad_status”
returns
new_datasetdict
dictionary containing the output field “echoID”

WBN#

description

Computes the wide band noise from the horizontal or vertical IQ data

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU” or “IQvvADU”
returns
new_datasetdict
dictionary containing the output field “WBN” (wide-band noise)

WIND_VEL#

description

Estimates the horizontal or vertical component of the wind from the radial velocity

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain
“V” or “Vc”
vert_projBoolean
If true the vertical projection is computed. Otherwise the
horizontal projection is computed
returns
new_datasetdict
dictionary containing the output field
“wind_vel_h_az”, (if vert_proj is False), or,
“wind_vel_v” (if vert_proj is True)

WINDSHEAR#

description

Estimates the wind shear from the wind velocity

[Source]

parameters
datatypestring. Dataset keyword
The input data type
az_tolfloat
The tolerance in azimuth when looking for gates on top
of the gate when computation is performed
returns
new_datasetdict
dictionary containing the output field “windshear_v”

WINDSHEAR_LIDAR#

description

Estimates the wind shear from the wind velocity of lidar scans

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain
“V” or “Vc”
az_tolfloat
The tolerance in azimuth when looking for gates on top
of the gate when computation is performed
returns
new_datasetdict
dictionary containing the output field “windshear_v”

ZDR#

description

Computes differential reflectivity from the horizontal and vertical spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“sdBZ” and “sdBZv”, or
“sdBuZ” and “sdBZuv”
returns
new_datasetdict
dictionary containing the output fields
“ZDR” or “ZDRu” depending on the specified input datatype

ZDR_IQ#

description

Computes differential reflectivity from the horizontal and vertical IQ data

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“IQhhADU”, “IQvvADU”, “IQNADUh” and “IQNADUv”
subtract_noiseBool
If True noise will be subtracted from the signal
lagint
The time lag to use in the estimators
returns
new_datasetdict
dictionary containing the output field “ZDR”

ZDR_PREC#

description

Keeps only suitable data to evaluate the differential reflectivity in moderate rain or precipitation (for vertical scans)

[Source]

parameters
datatypelist of strings. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“PhiDP” or “PhiDPc”, and,
“uRhoHV” or “RhoHV” or “RhoHVc”, and,
“TEMP” (Optional), and,
“H_ISO0” (Optional)
ml_filterboolean. Dataset keyword
indicates if a filter on data in and above the melting layer is
applied. Default True.
rminfloat. Dataset keyword
minimum range where to look for rain [m]. Default 1000.
rmaxfloat. Dataset keyword
maximum range where to look for rain [m]. Default 50000.
Zminfloat. Dataset keyword
minimum reflectivity to consider the bin as precipitation [dBZ].
Default 20.
Zmaxfloat. Dataset keyword
maximum reflectivity to consider the bin as precipitation [dBZ]
Default 22.
RhoHVminfloat. Dataset keyword
minimum RhoHV to consider the bin as precipitation
Default 0.97
PhiDPmaxfloat. Dataset keyword
maximum PhiDP to consider the bin as precipitation [deg]
Default 10.
elmaxfloat. Dataset keyword
maximum elevation angle where to look for precipitation [deg]
Default None.
ml_thicknessfloat. Dataset keyword
assumed thickness of the melting layer. Default 700.
fzlfloat. Dataset keyword
The default freezing level height. It will be used if no
temperature field name is specified or the temperature field is
not in the radar object. Default 2000.
soundingstr. Dataset keyword
The nearest radiosounding WMO code (5 int digits). It will be used to
compute the freezing level, if no temperature field name is specified,
if the temperature field isin the radar object or if no freezing_level
is explicitely defined.
returns
new_datasetdict
dictionary containing the output field “ZDR_prec”

ZDR_SNOW#

description

Keeps only suitable data to evaluate the differential reflectivity in snow

[Source]

parameters
datatypelist of strings. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“PhiDP” or “PhiDPc”, and,
“uRhoHV” or “RhoHV” or “RhoHVc”, and,
“hydro”, and,
“TEMP” (Optional), and,
“SNRh” or “SNRv” (Optional, used to filter with SNRmin and SNRmax)
rminfloat. Dataset keyword
minimum range where to look for rain [m]. Default 1000.
rmaxfloat. Dataset keyword
maximum range where to look for rain [m]. Default 50000.
Zminfloat. Dataset keyword
minimum reflectivity to consider the bin as snow [dBZ].
Default 0.
Zmaxfloat. Dataset keyword
maximum reflectivity to consider the bin as snow [dBZ]
Default 30.
SNRminfloat. Dataset keyword
minimum SNR to consider the bin as snow [dB].
Default 10.
SNRmaxfloat. Dataset keyword
maximum SNR to consider the bin as snow [dB]
Default 50.
RhoHVminfloat. Dataset keyword
minimum RhoHV to consider the bin as snow
Default 0.97
PhiDPmaxfloat. Dataset keyword
maximum PhiDP to consider the bin as snow [deg]
Default 10.
elmaxfloat. Dataset keyword
maximum elevation angle where to look for snow [deg]
Default None.
KDPmaxfloat. Dataset keyword
maximum KDP to consider the bin as snow [deg]
Default None
TEMPminfloat. Dataset keyword
minimum temperature to consider the bin as snow [deg C].
Default None
TEMPmaxfloat. Dataset keyword
maximum temperature to consider the bin as snow [deg C]
Default None
hydroclasslist of ints. Dataset keyword
list of hydrometeor classes to keep for the analysis
Default [2] (dry snow)
returns
new_datasetdict
dictionary containing the output field “ZDR_snow”

SPECTRA#

FFT#

description

Compute the Doppler spectra form the IQ data with a Fourier transform

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“IQNdBADUh” and/or “IQNdBADUv” and/or
“IQNADUh” and/or “IQNADUv” (see new_dataset below)
windowlist of str
Parameters of the window used to obtain the spectra. The
parameters are the ones corresponding to function
scipy.signal.windows.get_window. It can also be [‘None’].
returns
new_datasetdict
dictionary containing the output fields
“ShhADUu” (unfiltered_complex_spectra_hh_ADU) if IQNdBADUh was provided,
“SvvADUu” (unfiltered_complex_spectra_vv_ADU) if IQNdBADUv was provided,
“sNADUh” (spectral_noise_power_hh_ADU) if IQNADUh was provided,
“sNADUv” (spectral_noise_power_vv_ADU) if IQNADUv was provided,

FILTER_0DOPPLER#

description

Function to filter the 0-Doppler line bin and neighbours of the Doppler spectra

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any of the spectral fields supported by pyrad
filter_widthfloat
The Doppler filter width. Default 0.
filter_unitsstr
Can be ‘m/s’ or ‘Hz’. Default ‘m/s’
returns
new_datasetdict
dictionary containing the output field, the names of the output fields
is the same as the provided datatypes, except for unfiltered fields which are renamed in the following
“dBuZ” => “dBZ”

FILTER_SPECTRA_NOISE#

description

Filter the noise of the Doppler spectra by clipping any data below the noise level plus a margin

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“ShhADU” or “SvvADU” or “ShhADUu” or “SvvADUu”, and,
“sNADUh” or “sNADUv”
clipping_levelfloat
The clipping level [dB above noise level]. Default 10.
returns
new_datasetdict
dictionary containing the output field, the names of the output fields
is the same as the provided datatypes

IFFT#

description

Compute the Doppler spectrum width from the spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“ShhADU” or “ShhADUu”, or,
“SvvADU” or “SvvADUu”, or,
“sNADUh” or “sNADUv”
returns
new_datasetdict
dictionary containing the output fields
“IQhhADU” if “ShhADU” or “ShhADUu” were provided,
“IQhvvDU” if “SvvADU” or “SvvADUu” were provided,
“IQNADUh” if “sNADUh” was provided,
“IQNADUv” if “sNADUv” was provided.

RAW_IQ#

description

Dummy function that returns the initial input data set

[Source]

parameters


returns
new_datasetdict
dictionary containing the output

RAW_SPECTRA#

description

Dummy function that returns the initial input data set

[Source]

parameters


returns
new_datasetdict
dictionary containing the output

SPECTRA_ANGULAR_AVERAGE#

description

Function to average the spectra over the rays. This function is intended mainly for vertically pointing scans. The function assumes the volume is composed of a single sweep, it averages over the number of rays specified by the user and produces a single ray output.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types,
any spectral datatype supported by pyrad
navgint
Number of spectra to average. If -1 all spectra will be averaged.
Default -1.
returns
new_datasetdict
dictionary containing the same output fields as the provided datatypes

SPECTRA_POINT#

description

Obtains the spectra or IQ data at a point location.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
single_pointboolean. Dataset keyword
if True only one gate per radar volume is going to be kept.
Otherwise all gates within the azimuth and elevation tolerance
are going to be kept. This is useful to extract all data from
fixed pointing scans. Default True
latlonboolean. Dataset keyword
if True position is obtained from latitude, longitude information,
otherwise position is obtained from antenna coordinates
(range, azimuth, elevation). Default False
truealtboolean. Dataset keyword
if True the user input altitude is used to determine the point of
interest.
if False use the altitude at a given radar elevation ele over the
point of interest. Default True
lonfloat. Dataset keyword
the longitude [deg]. Use when latlon is True.
latfloat. Dataset keyword
the latitude [deg]. Use when latlon is True.
altfloat. Dataset keyword
altitude [m MSL]. Use when latlon is True. Default 0.
elefloat. Dataset keyword
radar elevation [deg]. Use when latlon is False or when latlon is
True and truealt is False
azifloat. Dataset keyword
radar azimuth [deg]. Use when latlon is False
rngfloat. Dataset keyword
range from radar [m]. Use when latlon is False
AziTolfloat. Dataset keyword
azimuthal tolerance to determine which radar azimuth to use [deg].
Default 0.5
EleTolfloat. Dataset keyword
elevation tolerance to determine which radar elevation to use
[deg]. Default 0.5
RngTolfloat. Dataset keyword
range tolerance to determine which radar bin to use [m]. Default
50.
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

SPECTRAL_NOISE#

description

Computes the spectral noise

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“ShhADU” or “SvvADU” or “ShhADUu” or “SvvADUu”
unitsstr
The units of the returned signal. Can be ‘ADU’, ‘dBADU’ or ‘dBm’
navgint
Number of spectra averaged
rminint
Range from which the data is used to estimate the noise
nnoise_minint
Minimum number of samples to consider the estimated noise power
valid
returns
new_datasetdict
dictionary containing the output field
“sNADUh” or
“sNADUv” or
“sNdBADUh” or
“sNdBADUv” or
“sNdBmh” or
“sNdBmv”
depending on which input datatype and units were provided

SPECTRAL_PHASE#

description

Computes the spectral phase

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“ShhADU” or “SvvADU” or “ShhADUu” or “SvvADUu”
returns
new_datasetdict
dictionary containing the output field
“SPhasehh” if “ShhADU” was provided as input
“SPhasehhu” if “ShhADUu” was provided as input
“SPhasevv” if “SvvADU” was provided as input
“SPhasevvu” if “SvvADUu” was provided as input

SPECTRAL_POWER#

description

Computes the spectral power

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“ShhADU” or “SvvADU” or “ShhADUu” or “SvvADUu”, and,
“sNADUh”, or “sNADUv”
unitsstr
The units of the returned signal. Can be ‘ADU’, ‘dBADU’ or ‘dBm’
subtract_noiseBool
If True noise will be subtracted from the signal
smooth_windowint or None
Size of the moving Gaussian smoothing window. If none no smoothing
will be applied
returns
new_datasetdict
dictionary containing the output field
“sPhhADU” or “sPhhADUu”, or
“sPvvADU” or “sPvvADUu”, or
“sPhhdBADU” or “sPhhdBADUu”, or
“sPvvdBADU” or “sPvvdBADUu”, or
“sPhhAdBm” or “sPhhdBmu”, or
“sPvvdBm” or “sPvvdBmu”,
depending on which input datatype and units were provided

SPECTRAL_REFLECTIVITY#

description

Computes spectral reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
either a combination of signal and noise
“ShhADU” or “SvvADU” or “ShhADUu” or “SvvADUu”, and,
“sNADUh” or “sNADUv”, or
the power signal
“sPhhADU” or “sPvvADU” or “sPhhADUu” or “sPvvADUu”
subtract_noiseBool
If True noise will be subtracted from the signal
smooth_windowint or None
Size of the moving Gaussian smoothing window. If none no smoothing
will be applied
returns
new_datasetdict
dictionary containing the output field
“sdBZ” if “ShhADU” (or “sPhhADU”) was provided as input
“sdBuZ” if “ShhADUu” (or “sPhhADUu”) was provided as input
“sdBZv” if “SvvADU” (or “sPvvADU”) was provided as input
“sdBuZv” if “SvvADUu” (or “sPvvADUu”) was provided as input

SRHOHV_FILTER#

description

Filter Doppler spectra as a function of spectral RhoHV

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“sRhoHV” or “sRhoHVu”,
as well as any spectral field supported by pyrad
sRhoHV_thresholdfloat
Data with sRhoHV module above this threshold will be filtered.
Default 1.
returns
new_datasetdict
dictionary containing the output field, the names of the output fields
is the same as the provided datatypes, except for unfiltered fields which are renamed in the following
“dBuZ” => “dBZ”

CENTROIDS#

CENTROIDS#

description

Computes centroids for the semi-supervised hydrometeor classification

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“RhoHV”, or “uRhoHV”, or “RhoHVc”, and,
“KDP”, or “KDPc”, and,
“TEMP” or “H_ISO0” (optional)
samples_per_volint. Dataset keyword
Maximum number of samples per volume kept for further analysis.
Default 20000
nbinsint.
Number of bins of the histogram used to make the data platykurtic.
Default 110
pdf_zh_maxint
Multiplicative factor to the Guassian function used to make the
distribution of the reflectivity platykurtic that determines the
number of samples for each bin. Default 10000
pdf_relh_maxint
Multiplicative factor to the Guassian function used to make the
distribution of the height relative to the iso-0 platykurtic that
determines the number of samples for each bin. Default 20000
sigma_zh, sigma_relhfloat
sigma of the respective Gaussian functions. Defaults 0.75 and 1.5
randomizebool
If True the data is randomized to avoid the effects of the
quantization. Default True
platykurtic_dBZbool
If True makes the reflectivity distribution platykurtic. Default
True
platykurtic_H_ISO0bool
If True makes the height respect to the iso-0 distribution
platykurtic. Default True
relh_slopefloat. Dataset keyword
The slope used to transform the height relative to the iso0 into
a sigmoid function. Default 0.001
external_iterationsint. Dataset keywords
Number of iterations of the external loop. This number will
determine how many medoids are computed for each hydrometeor
class. Default 30
internal_iterationsint. Dataset keyword
Maximum number of iterations of the internal loop. Default 10
sample_dataBool.
If True the data is going to be sampled prior to each external
iteration. Default False
nsamples_iterint.
Number of samples per iteration. Default 20000
alphafloat
Minimum value to accept the cluster according to p. Default 0.01
cv_approachBool
If true it is used a critical value approach to reject or accept
similarity between observations and reference. If false it is used
a p-value approach. Default True
n_samples_synint
Number of samples drawn from reference to compare it with
observations in the KS test. Default 50
num_samples_arrarray of int
Number of observation samples used in the KS test to choose from.
Default (30, 35, 40)
acceptance_thresholdfloat. Dataset keyword
Threshold on the inter-quantile coefficient of dispersion of the
medoids above which the medoid of the class is not acceptable.
Default 0.5
nmedoids_minint
Minimum number of intermediate medoids to compute the final
result. Default 1
var_namestupple
The names of the features. Default (‘dBZ’, ‘ZDR’, ‘KDP’, ‘RhoHV’,
‘H_ISO0’)
hydro_names: tupple
The name of the hydrometeor types. Default (‘AG’, ‘CR’, ‘LR’,
‘RP’, ‘RN’, ‘VI’, ‘WS’, ‘MH’, ‘IH/HDG’)
weighttupple
The weight given to each feature when comparing to the reference.
It is in the same order as var_names. Default (1., 1., 1., 1.,
0.75)
parallelizedbool
If True the centroids search is going to be parallelized. Default
False
kmax_iterint
Maximum number of iterations of the k-medoids algorithm. Default
100
nsamples_smallint
Maximum number before using the k-medoids CLARA algorithm. If this
number is exceeded the CLARA algorithm will be used. Default 40000
sampling_size_claraint
Number of samples used in each iteration of the k-medoids CLARA
algorithm. Default 10000
niter_claraint
Number of iterations performed by the k-medoids CLARA algorithm.
Default 5
keep_labeled_databool
If True the labeled data is going to be kept for storage. Default
True
use_medianbool
If True the intermediate centroids are computed as the median
of the observation variables and the final centroids are computed
as the median of the intermediate centroids. If false they are
computed using the kmedoids algorithm. Default false
allow_label_duplicatesbool
If True allow to label multiple clusters with the same label.
Default True
returns
new_datasetdict
dictionary containing the output centroids

COLOCATED_GATES#

COLOCATED_GATES#

description

Find colocated gates within two radars

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types to use to check colocated gates (one for every radar)
Any datatype supported by pyrad and available in both radars is accepted.
If visibility filtering is desired, the fields
“visibility” or “visibility_polar” must be specified for both radars.
h_tolfloat. Dataset keyword
Tolerance in altitude difference between radar gates [m].
Default 100.
latlon_tolfloat. Dataset keyword
Tolerance in latitude and longitude position between radar gates
[deg]. Default 0.0005
vol_d_tolfloat. Dataset keyword
Tolerance in pulse volume diameter [m]. Default 100.
visminfloat. Dataset keyword
Minimum visibility [percent]. Default None.
hminfloat. Dataset keyword
Minimum altitude [m MSL]. Default None.
hmaxfloat. Dataset keyword
Maximum altitude [m MSL]. Default None.
rminfloat. Dataset keyword
Minimum range [m]. Default None.
rmaxfloat. Dataset keyword
Maximum range [m]. Default None.
elminfloat. Dataset keyword
Minimum elevation angle [deg]. Default None.
elmaxfloat. Dataset keyword
Maximum elevation angle [deg]. Default None.
azrad1minfloat. Dataset keyword
Minimum azimuth angle [deg] for radar 1. Default None.
azrad1maxfloat. Dataset keyword
Maximum azimuth angle [deg] for radar 1. Default None.
azrad2minfloat. Dataset keyword
Minimum azimuth angle [deg] for radar 2. Default None.
azrad2maxfloat. Dataset keyword
Maximum azimuth angle [deg] for radar 2. Default None.
returns
new_datasetdict
dictionary containing the field “colocated_gates”

ICON_COORD#

ICON_COORD#

description

Gets the icon indices corresponding to each icon coordinates

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
iconpathstring. General keyword
path where to store the look up table
modelstring. Dataset keyword
The icon model to use. Can be icon-1, icon-1e, icon-2, icon-7
returns
new_datasetdict
dictionary containing the output field
“icon_index”

HZT_COORD#

description

Gets the HZT indices corresponding to each HZT coordinates

[Source]

parameters
metranet_read_libstr. Global keyword
Type of METRANET reader library used to read the data.
Can be ‘C’ or ‘python’
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
iconpathstring. General keyword
path where to store the look up table
returns
new_datasetdict
dictionary containing the output field “icon_index”

ICON2RADAR#

ICON2RADAR#

description

Gets icon data and put it in radar coordinates using look up tables

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by pyrad
icon_typestr. Dataset keyword
name of the icon field to process. Default TEMP
icon_variableslist of strings. Dataset keyword
Py-art name of the icon fields. Default temperature
icon_time_index_min, icon_time_index_maxint
minimum and maximum indices of the icon data to retrieve. If a
value is provided only data corresponding to the time indices
within the interval will be used. If None all data will be used.
Default None
returns
new_datasetdict
dictionary containing the output fields corresponding to icon_variables

GRID#

RAW_GRID#

description

Dummy function that returns the initial input data set

[Source]

parameters
datatypestring. Dataset keyword
arbitrary data type supported by pyrad and contained in the grid data
returns
new_datasetdict
dictionary containing the output with field corresponding to datatype

GECSX#

description

Computes ground clutter RCS, radar visibility and many others using the GECSX algorithmn translated from IDL into python

[Source]

parameters
datatypelist of string. Dataset keyword
arbitrary data type supported by pyrad
range_discretizationfloat. Dataset keyword
Range discretization used when computing the Cartesian visibility field
the larger the better but the slower the processing will be
az_discretizationfloat. Dataset keyword
Azimuth discretization used when computing the Cartesian visibility
field, the larger the better but the slower the processing will be
kefloat. Dataset keyword
Equivalent earth-radius factor used in the computation of the radar
beam refraction
atm_attfloat. Dataset keyword
One-way atmospheric refraction in db / km
mosotti_kwfloat. Dataset keyword
Clausius-Mosotti factor K, depends on material (water) and wavelength
for water = sqrt(0.93)
raster_oversamplingint. Dataset keyword
The raster resolution of the DEM should be smaller than
the range resolution of the radar (defined by the pulse length).
If this is not the case, this keyword can be set to increase the
raster resolution. The values for the elevation, sigma naught,
visibility are repeated. The other values are recalculated.
Values for raster_oversampling:
0 or undefined: No oversampling is done
1: Oversampling is done. The factor N is automatically calculated
such that 2*dx/N < pulse length
2 or larger: Oversampling is done with this value as N
sigma0_methodstring. Dataset keyword
Which estimation method to use, either ‘Gabella’ or ‘Delrieu’
clipint. Dataset keyword
If set to true, the provided DEM will be clipped to the extent
of the polar radar domain. Increases computation speed a lot but
Cartesian output fields will be available only over radar domain
returns
new_datasetlist of dict
list of dictionaries containing the polar data output and the
Cartesian data output in this order
The first dictionary (polar) contains the following fields:
“rcs_clutter”, “dBm_clutter”, “dBZ_clutter” and “visibility_polar”
The second dictionary (cart) contains the following fields:
“bent_terrain_altitude”, “terrain_slope”, “terrain_aspect”,
“elevation_angle”, “min_vis_elevation”, “min_vis_altitude”,
“incident_angle”, “sigma_0”, “effective_area”

GRID#

description

Puts the radar data in a regular grid

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
gridconfigdictionary. Dataset keyword
Dictionary containing some or all of this keywords:
xmin, xmax, ymin, ymax, zmin, zmax : floats
minimum and maximum horizontal distance from grid origin [km]
and minimum and maximum vertical distance from grid origin [m]
Defaults -40, 40, -40, 40, 0., 10000.
latmin, latmax, lonmin, lonmax : floats
minimum and maximum latitude and longitude [deg], if specified
xmin, xmax, ymin, ymax, latorig, lonorig will be ignored
hres, vres : floats
horizontal and vertical grid resolution [m]
Defaults 1000., 500.
latorig, lonorig, altorig : floats
latitude and longitude of grid origin [deg] and altitude of
grid origin [m MSL]
Defaults the latitude, longitude and altitude of the radar
wfuncstr. Dataset keyword
the weighting function used to combine the radar gates close to a
grid point. Possible values BARNES, BARNES2, CRESSMAN, NEAREST
Default NEAREST
roif_funcstr. Dataset keyword
the function used to compute the region of interest.
Possible values: dist_beam, constant
roifloat. Dataset keyword
the (minimum) radius of the region of interest in m. Default half
the largest resolution
beamwidthfloat. Dataset keyword
the radar antenna beamwidth [deg]. If None that of the key
radar_beam_width_h in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
a default 1 deg value will be used
beam_spacingfloat. Dataset keyword
the beam spacing, i.e. the ray angle resolution [deg]. If None,
that of the attribute ray_angle_res of the radar object will be
used. If the attribute is None a default 1 deg value will be used
returns
new_datasetdict
dictionary containing the gridded data with fields corresponding to
datatype

GRID_FIELDS_DIFF#

description

Computes grid field differences

[Source]

parameters
datatypelist of string. Dataset keyword
The two input data types to compare.
Can any two datatypes supported by pyrad
returns
new_datasetdict
dictionary containing a radar object containing the field differences

GRID_MASK#

description

Mask data. Puts True if data is within thresholds, False if it is not. Thresholds can be min, max or both min and max

[Source]

parameters
datatypelist of string. Dataset keyword
The input data type, can be any datatype supported by pyrad
threshold_minfloat or None
Threshold used for the mask. Values below threshold are set to False.
Above threshold are set to True. Default None.
threshold_maxfloat or None
Threshold used for the mask. Values above threshold are set to False.
Below threshold are set to True. Default None.
x_dir_ext, y_dir_extint
Number of pixels by which to extend the mask on each side of the
west-east direction and south-north direction
returns
new_datasetdict
dictionary containing the output field “mask”

GRID_TEXTURE#

description

Computes the 2D texture of a gridded field

[Source]

parameters
datatypelist of string. Dataset keyword
The input data type, can be any datatype supported by pyrad
xwind, ywindint
The size of the local window in the x and y axis. Default 7
fill_valuefloat
The value with which to fill masked data. Default np.NaN
returns
new_datasetdict
dictionary containing a radar object containing the field
“texture”

NORMALIZE_LUMINOSITY#

description

Normalize the data by the sinus of the sun elevation. The sun elevation is computed at the central pixel.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data type, can be any datatype supported by pyrad
returns
new_datasetdict
dictionary containing the normalized field, the name
of the field is datatype_norm

PIXEL_FILTER#

description

Masks all pixels that are not of the class specified in keyword pixel_type

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“mask”, as well as
any datatypes supported by pyrad
pixel_typeint or list of ints
The type of pixels to keep: 0 No data, 1 Below threshold, 2 Above
threshold. Default 2
returns
new_datasetdict
dictionary containing the output datatypes masked

VOL2GRID#

description

Function to convert polar data into a Cartesian grid

[Source]

parameters
xmin, xmax, ymin, ymaxfloat
Horizontal limits of the grid [m from origin]. Default +-20000.
zmin, zmaxfloat
vertical limits of the grid [masl]. Default 1000.
hres, vresfloat
horizontal and vertical resolution [m]. Default 1000.
lat0, lon0float
Grid origin [deg]. The default will be the radar position
alt0float
Grid origin altitude [masl]. Default is 0
wfuncstr
Weighting function. Default NEAREST
returns
new_datasetdict
dictionary containing the output

DDA#

description

Estimates horizontal wind speed and direction with a multi-doppler approach This method uses the python package pyDDA

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain
“V” or “Vc”, and,
“dBuZ”, “dBZ”, or “dBZc”

gridconfigdictionary. Dataset keyword
Dictionary containing some or all of this keywords:
xmin, xmax, ymin, ymax, zmin, zmax : floats
minimum and maximum horizontal distance from grid origin [km]
and minimum and maximum vertical distance from grid origin [m]
Defaults -40, 40, -40, 40, 0., 10000.
latmin, latmax, lonmin, lonmax : floats
minimum and maximum latitude and longitude [deg], if specified
xmin, xmax, ymin, ymax will be ignored
hres, vres : floats
horizontal and vertical grid resolution [m]
Defaults 1000., 500.
latorig, lonorig, altorig : floats
latitude and longitude of grid origin [deg] and altitude of
grid origin [m MSL]
Defaults the latitude, longitude and altitude of the radar
wfuncstr. Dataset keyword
the weighting function used to combine the radar gates close to a
grid point. Possible values BARNES, BARNES2, CRESSMAN, NEAREST
Default NEAREST
roif_funcstr. Dataset keyword
the function used to compute the region of interest.
Possible values: dist_beam, constant
roifloat. Dataset keyword
the (minimum) radius of the region of interest in m. Default half
the largest resolution
beamwidthfloat. Dataset keyword
the radar antenna beamwidth [deg]. If None that of the key
radar_beam_width_h in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
a default 1 deg value will be used
beam_spacingfloat. Dataset keyword
the beam spacing, i.e. the ray angle resolution [deg]. If None,
that of the attribute ray_angle_res of the radar object will be
used. If the attribute is None a default 1 deg value will be used
signslist of integers
The sign of the velocity field for every radar object.
A value of 1 represents when
positive values velocities are towards the radar, -1 represents
when negative velocities are towards the radar.
Cofloat
Weight for cost function related to observed radial velocities.
Default: 1.
Cmfloat
Weight for cost function related to the mass continuity equation.
Default: 1500.
Cx: float
Smoothing coefficient for x-direction
Cy: float
Smoothing coefficient for y-direction
Cz: float
Smoothing coefficient for z-direction
Cb: float
Coefficient for sounding constraint
Cv: float
Weight for cost function related to vertical vorticity equation.
Cmod: float
Coefficient for model constraint
Cpoint: float
Coefficient for point constraint
wind_tol: float
Stop iterations after maximum change in winds is less than this
value.
frzfloat
The freezing level in meters. This is to tell PyDDA where to use
ice particle fall speeds in the wind retrieval verus liquid.
returns
new_datasetdict
dictionary containing the output fields
“wind_vel_h_u”, “wind_vel_h_v” and “wind_vel_v”

GRID_TIMEAVG#

GRID_TIME_STATS#

description

computes the temporal statistics of a field

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any datatype supported by pyrad
periodfloat. Dataset keyword
the period to average [s]. If -1 the statistics are going to be
performed over the entire data. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
lin_trans: int. Dataset keyword
If 1 apply linear transformation before averaging
use_nanbool. Dataset keyword
If true non valid data will be used
nan_valuefloat. Dataset keyword
The value of the non valid data. Default 0
stat: string. Dataset keyword
Statistic to compute: Can be mean, std, cov, min, max. Default
mean
returns
new_datasetdict
dictionary containing the output fields corresponding to datatypes

GRID_TIME_STATS2#

description

computes temporal statistics of a field

[Source]

parameters
datatypelist of string. Dataset keyword
The input data type, can be any datatype supported by pyrad
periodfloat. Dataset keyword
the period to average [s]. If -1 the statistics are going to be
performed over the entire data. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
stat: string. Dataset keyword
Statistic to compute: Can be median, mode, percentileXX
use_nanbool. Dataset keyword
If true non valid data will be used
nan_valuefloat. Dataset keyword
The value of the non valid data. Default 0
returns
new_datasetdict
dictionary containing the output fields corresponding to
datatypes

GRID_RAIN_ACCU#

description

computes rainfall accumulation fields

[Source]

parameters
datatypelist of string. Dataset keyword
The input data type, can be any data type supported by pyrad
but typically RR is used
periodfloat. Dataset keyword
the period to average [s]. If -1 the statistics are going to be
performed over the entire data. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
use_nanbool. Dataset keyword
If true non valid data will be used
nan_valuefloat. Dataset keyword
The value of the non valid data. Default 0
returns
new_datasetdict
dictionary containing the output field corresponding to datatype

INTERCOMP#

INTERCOMP#

description

intercomparison between two radars at co-located gates. The variables compared must be of the same type.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types (one for every radar).
Any arbitrary datatype supported by pyrad and available
in both radar is accepted.
colocgatespathstring.
base path to the file containing the coordinates of the co-located
gates
coloc_radars_namestring. Dataset keyword
string identifying the radar names
rays_are_indexedbool. Dataset keyword
If True it is considered that the rays are indexed and that the
data can be selected simply looking at the ray number.
Default false
azi_tolfloat. Dataset keyword
azimuth tolerance between the two radars. Default 0.5 deg
ele_tolfloat. Dataset keyword
elevation tolerance between the two radars. Default 0.5 deg
rng_tolfloat. Dataset keyword
range tolerance between the two radars. Default 50 m
coloc_data_dirstring. Dataset keyword
name of the directory containing the csv file with colocated data
returns
new_datasetdict
dictionary containing a dictionary with intercomparison data and the
key “final” which contains a boolean that is true when all volumes
have been processed

INTERCOMP_FIELDS#

description

intercomparison between two radars

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types for each radar,
Any datatype supported by pyrad and available in both radars is supported
returns
new_datasetdict
dictionary containing a dictionary with intercomparison data

INTERCOMP_TIME_AVG#

description

intercomparison between the average reflectivity of two radars

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
dBZ” or “dBZc” or “dBuZ” or “dBZv” or “dBZvc” or “dBuZv, and,
“PhiDP” or “PhiDPc”, and,
“time_avg_flag”
for the two radars
colocgatespathstring.
base path to the file containing the coordinates of the co-located
gates
coloc_data_dirstring. Dataset keyword
name of the directory containing the csv file with colocated data
coloc_radars_namestring. Dataset keyword
string identifying the radar names
rays_are_indexedbool. Dataset keyword
If True it is considered that the rays are indexed and that the
data can be selected simply looking at the ray number.
Default false
azi_tolfloat. Dataset keyword
azimuth tolerance between the two radars. Default 0.5 deg
ele_tolfloat. Dataset keyword
elevation tolerance between the two radars. Default 0.5 deg
rng_tolfloat. Dataset keyword
range tolerance between the two radars. Default 50 m
clt_maxint. Dataset keyword
maximum number of samples that can be clutter contaminated.
Default 100 i.e. all
phi_excess_maxint. Dataset keyword
maximum number of samples that can have excess instantaneous
PhiDP. Default 100 i.e. all
non_rain_maxint. Dataset keyword
maximum number of samples that can be no rain. Default 100 i.e. all
phi_avg_maxfloat. Dataset keyword
maximum average PhiDP allowed. Default 600 deg i.e. any
returns
new_datasetdict
dictionary containing a dictionary with intercomparison data and the
key “final” which contains a boolean that is true when all volumes
have been processed

ML#

ML_DETECTION#

description

Detects the melting layer

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBZ” or “dBZc”, and,
“ZDR” or “ZDRc”, and,
“RhoHV” or “RhoHVc”, and,
“TEMP” or “H_ISO0” (optional)
returns
new_datasetdict
dictionary containing the output field “ml”

VPR#

VPR#

description

Computes the vertical profile of reflectivity using the Meteo-France operational algorithm

[Source]

parameters
datatypestring. Dataset keyword
The input data type, must contain,
“dBZ” or “dBZc”, and,
“H_ISO0” or “H_ISO0c” or “TEMP” or “TEMPc”
nvalid_minint
Minimum number of rays with data to consider the azimuthal average
valid. Default 20.
angle_min, angle_maxfloat
Minimum and maximum elevation angles used to compute the ratios of
reflectivity. Default 0. and 4.
ml_thickness_min, ml_thickness_max, ml_thickness_stepfloat
Minimum, maximum and step of the melting layer thickness of the
models to explore [m]. Default 200., 800. and 200.
iso0_maxfloat
maximum iso0 altitude of the profile. Default 5000.
ml_top_diff_max, ml_top_stepfloat
maximum difference +- between iso-0 and top of the melting layer
[m] of the models to explore. Step. Default 200. and 200.
ml_peak_min, ml_peak_max, ml_peak_step: float
min, max and step of the value at the peak of the melting layer of
the models to explore. Default 1., 6. and 1.
dr_min, dr_max, dr_stepfloat
min, max and step of the decreasing ratio above the melting layer.
Default -6., -1.5 and 1.5
dr_defaultfloat
default decreasing ratio to use if a proper model could not be
found. Default -4.5
dr_altfloat
altitude above the melting layer top (m) where theoretical profile
needs to be defined to be able to compute DR. If the theoretical
profile is not defined up to the resulting altitude a default DR
is used. Default 800.
h_maxfloat
maximum altitude [masl] where to compute the model profile.
Default 6000.
h_corr_maxfloat
maximum altitude [masl] considered for the VPR correction
h_resfloat
resolution of the model profile (m). Default 1.
max_weightfloat
Maximum weight of the antenna pattern. Default 9.
rmin_obs, rmax_obsfloat
minimum and maximum range (m) of the observations that are
compared with the model. Default 5000. and 150000.
use_mlbool
If True the retrieved ML will be used to select the range of
variability the meltin layer top and thickness
vpr_memory_maxfloat
The maximum time range to average reflectivity (min)
filter_vpr_memory_maxfloat
The maximum time range where to look for previous VPR retrievals
ml_datatypestr
Melting layer data type descriptor
z_datatypestr
descriptor used get the linear reflectivity information
vpr_theo_datatypestr
descriptor used to get the retrieved theoretical VPR
filter_paramsbool
If True the current theoretical VPR profile is averaged with the
past VPR profile by averaging the 4 parameters that define the
profile, otherwise the shape of the profiles is averaged. Default
false. Used only in non-spatialised VPR correction
weight_memfloat
Weight given to past VPR when filtering the current VPR
spatializedbool
If True the VPR correction is spatialized
correct_iso0bool
If True the iso0 field is corrected by a bias constant computed as
the difference between the retrieved melting layer top and the
average iso0 and areas with precipitation. Default True. Used only
in the spatialised VPR correction
returns
new_datasetdict
dictionary containing the output fields “dBZc” and “VPRcorr”

MONITORING#

GC_MONITORING#

description

computes ground clutter monitoring statistics

[Source]

parameters
excessgatespathstr. Config keyword
The path to the gates in excess of quantile location
excessgates_fnamestr. Dataset keyword
The name of the gates in excess of quantile file
datatypelist of string. Dataset keyword
The input data types, it must contain
“echoID” (Optional allows filter_prec),
as well as any other fields supported by pyrad
stepfloat. Dataset keyword
The width of the histogram bin. Default is None. In that case the
default step in function get_histogram_bins is used
regular_gridBoolean. Dataset keyword
Whether the radar has a Boolean grid or not. Default False
val_minFloat. Dataset keyword
Minimum value to consider that the gate has signal. Default None
filter_precstr. Dataset keyword
Give which type of volume should be filtered. None, no filtering;
keep_wet, keep wet volumes; keep_dry, keep dry volumes.
rmax_precfloat. Dataset keyword
Maximum range to consider when looking for wet gates [m]
percent_prec_maxfloat. Dataset keyword
Maxim percentage of wet gates to consider the volume dry
returns
new_datasetRadar
radar object containing histogram data with fields corresponding
to specified datatypes

MONITORING#

description

computes monitoring statistics

[Source]

parameters
datatypelist of string. Dataset keyword
Arbitrary datatype supported by pyrad
stepfloat. Dataset keyword
The width of the histogram bin. Default is None. In that case the
default step in function get_histogram_bins is used
max_raysint. Dataset keyword
The maximum number of rays per sweep used when computing the
histogram. If set above 0 the number of rays per sweep will be
checked and if above max_rays the last rays of the sweep will be
removed
returns
new_datasetRadar
radar object containing histogram data

OCCURRENCE#

OCCURRENCE#

description

computes the frequency of occurrence of data. It looks only for gates where data is present.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, it must contain
“echoID” (Optional allows filter_prec),
as well as any other fields supported by pyrad
regular_gridBoolean. Dataset keyword
Whether the radar has a Boolean grid or not. Default False
rmin, rmaxfloat. Dataset keyword
minimum and maximum ranges where the computation takes place. If
-1 the whole range is considered. Default is -1
val_minFloat. Dataset keyword
Minimum value to consider that the gate has signal. Default None
filter_precstr. Dataset keyword
Give which type of volume should be filtered. None, no filtering;
keep_wet, keep wet volumes; keep_dry, keep dry volumes.
rmax_precfloat. Dataset keyword
Maximum range to consider when looking for wet gates [m]
percent_prec_maxfloat. Dataset keyword
Maxim percentage of wet gates to consider the volume dry
returns
new_datasetdict
radar object containing frequency of occurence data with fields corresponding
to specified datatypes

OCCURRENCE_PERIOD#

description

computes the frequency of occurrence over a long period of time by adding together shorter periods

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“occurence” and,
“nsamples”
regular_gridBoolean. Dataset keyword
Whether the radar has a Boolean grid or not. Default False
rmin, rmaxfloat. Dataset keyword
minimum and maximum ranges where the computation takes place. If
-1 the whole range is considered. Default is -1
returns
new_datasetdict
dictionary containing the output fields “occurence” and
“nsamples”

TIMEAVG_STD#

description

computes the average and standard deviation of data. It looks only for gates where data is present.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, it must contain
“echoID” (Optional allows filter_prec),
“dBZ” or “dBZc” or “dBZv” or “dBZvc” or “dBuZ” or “dBuZc” (Optional, allows val_min)
as well as any other fields supported by pyrad
regular_gridBoolean. Dataset keyword
Whether the radar has a Boolean grid or not. Default False
rmin, rmaxfloat. Dataset keyword
minimum and maximum ranges where the computation takes place. If
-1 the whole range is considered. Default is -1
val_minFloat. Dataset keyword
Minimum reflectivity value to consider that the gate has signal.
Default None
filter_precstr. Dataset keyword
Give which type of volume should be filtered. None, no filtering;
keep_wet, keep wet volumes; keep_dry, keep dry volumes.
rmax_precfloat. Dataset keyword
Maximum range to consider when looking for wet gates [m]
percent_prec_maxfloat. Dataset keyword
Maxim percentage of wet gates to consider the volume dry
lin_transBoolean. Dataset keyword
If True the data will be transformed into linear units. Default
False
returns
new_datasetdict
dictionary containing the average and standard deviation for every field
specified as datatype

QVP#

EVP#

description

Computes enhanced vertical profiles, by averaging over height levels PPI data.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement,
can be any datatype supported by pyrad and available in the data
lat, lonfloat
latitude and longitude of the point of interest [deg]
latlon_tolfloat
tolerance in latitude and longitude in deg. Default 0.0005
delta_rng, delta_azifloat
maximum range distance [m] and azimuth distance [degree] from the
central point of the evp containing data to average. Default 5000.
and 10.
hmaxfloat
The maximum height to plot [m]. Default 10000.
hresfloat
The height resolution [m]. Default 250.
avg_typestr
The type of averaging to perform. Can be either “mean” or “median”
Default “mean”
nvalid_minint
Minimum number of valid points to consider the data valid when
performing the averaging. Default 1
interp_kindstr
type of interpolation when projecting to vertical grid: ‘none’,
or ‘nearest’, etc. Default ‘none’.
‘none’ will select from all data points within the regular grid
height bin the closest to the center of the bin.
‘nearest’ will select the closest data point to the center of the
height bin regardless if it is within the height bin or not.
Data points can be masked values
If another type of interpolation is selected masked values will be
eliminated from the data points before the interpolation
returns
new_datasetdict
dictionary containing the EVP and a keyword stating whether the
processing has finished or not.
Kaltenboeck R., Ryzhkov A. 2016: A freezing rain storm explored with a
C-band polarimetric weather radar using the QVP methodology.
Meteorologische Zeitschrift vol. 26 pp 207-222

QVP#

description

Computes quasi vertical profiles, by averaging over height levels PPI data.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement,
can be any datatype supported by pyrad and available in the data
angleint or float
If the radar object contains a PPI volume, the sweep number to
use, if it contains an RHI volume the elevation angle.
Default 0.
ang_tolfloat
If the radar object contains an RHI volume, the tolerance in the
elevation angle for the conversion into PPI
hmaxfloat
The maximum height to plot [m]. Default 10000.
hresfloat
The height resolution [m]. Default 50
avg_typestr
The type of averaging to perform. Can be either “mean” or “median”
Default “mean”
nvalid_minint
Minimum number of valid points to accept average. Default 30.
interp_kindstr
type of interpolation when projecting to vertical grid: ‘none’,
or ‘nearest’, etc. Default ‘none’
‘none’ will select from all data points within the regular grid
height bin the closest to the center of the bin.
‘nearest’ will select the closest data point to the center of the
height bin regardless if it is within the height bin or not.
Data points can be masked values
If another type of interpolation is selected masked values will be
eliminated from the data points before the interpolation
returns
new_datasetdict
dictionary containing the QVP and a keyword stating whether the
processing has finished or not.
Ryzhkov A., Zhang P., Reeves H., Kumjian M., Tschallener T., Trömel S.,
Simmer C. 2016: Quasi-Vertical Profiles: A New Way to Look at Polarimetric
Radar Data. JTECH vol. 33 pp 551-562

SVP#

description

Computes slanted vertical profiles, by averaging over height levels PPI data.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement,
can be any datatype supported by pyrad and available in the data
angleint or float
If the radar object contains a PPI volume, the sweep number to
use, if it contains an RHI volume the elevation angle.
Default 0.
ang_tolfloat
If the radar object contains an RHI volume, the tolerance in the
elevation angle for the conversion into PPI. Default 1.
lat, lonfloat
latitude and longitude of the point of interest [deg]
latlon_tolfloat
tolerance in latitude and longitude in deg. Default 0.0005
delta_rng, delta_azifloat
maximum range distance [m] and azimuth distance [degree] from the
central point of the svp containing data to average. Default 5000.
and 10.
hmaxfloat
The maximum height to plot [m]. Default 10000.
hresfloat
The height resolution [m]. Default 250.
avg_typestr
The type of averaging to perform. Can be either “mean” or “median”
Default “mean”
nvalid_minint
Minimum number of valid points to consider the data valid when
performing the averaging. Default 1
interp_kindstr
type of interpolation when projecting to vertical grid: ‘none’,
or ‘nearest’, etc. Default ‘none’
‘none’ will select from all data points within the regular grid
height bin the closest to the center of the bin.
‘nearest’ will select the closest data point to the center of the
height bin regardless if it is within the height bin or not.
Data points can be masked values
If another type of interpolation is selected masked values will be
eliminated from the data points before the interpolation
returns
new_datasetdict
dictionary containing the svp and a keyword stating whether the
processing has finished or not.
Bukovcic P., Zrnic D., Zhang G. 2017: Winter Precipitation Liquid-Ice
Phase Transitions Revealed with Polarimetric Radar and 2DVD Observations
in Central Oklahoma. JTECH vol. 56 pp 1345-1363

TIME_HEIGHT#

description

Produces time height radar objects at a point of interest defined by latitude and longitude. A time-height contains the evolution of the vertical structure of radar measurements above the location of interest.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement,
can be any datatype supported by pyrad and available in the data
lat, lonfloat
latitude and longitude of the point of interest [deg]
latlon_tolfloat
tolerance in latitude and longitude in deg. Default 0.0005
hmaxfloat
The maximum height to plot [m]. Default 10000.
hresfloat
The height resolution [m]. Default 50
interp_kindstr
type of interpolation when projecting to vertical grid: ‘none’,
or ‘nearest’, etc. Default ‘none’
‘none’ will select from all data points within the regular grid
height bin the closest to the center of the bin.
‘nearest’ will select the closest data point to the center of the
height bin regardless if it is within the height bin or not.
Data points can be masked values
If another type of interpolation is selected masked values will be
eliminated from the data points before the interpolation
returns
new_datasetdict
dictionary containing the QVP and a keyword stating whether the
processing has finished or not.

TIME_ALONG_COORD#

description

Produces time series along a particular antenna coordinate

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the time series,
can be any datatype supported by pyrad and available in the data
modestr
coordinate to extract data along. Can be ALONG_AZI, ALONG_ELE or
ALONG_RNG
fixed_range, fixed_azimuth, fixed_elevationfloat
The fixed range [m], azimuth [deg] or elevation [deg] to extract.
In each mode two of these parameters have to be defined. If they
are not defined they default to 0.
ang_tol, rng_tolfloat
The angle tolerance [deg] and range tolerance [m] around the fixed
range or azimuth/elevation
value_start, value_stopfloat
The minimum and maximum value at which the data along a coordinate
start and stop
returns
new_datasetdict
dictionary containing the data and a keyword stating whether the
processing has finished or not.

SPARSE_GRID#

ZDR_COLUMN#

description

Detects ZDR columns

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“ZDR” or “ZDRc”, and,
“RhoHV” or “RhoHVc”, and,
“TEMP” or “H_ISO0”
returns
new_datasetdict
dictionary containing the output field “ZDR_col”

SUN_HITS#

SUN_HITS#

description

monitoring of the radar using sun hits

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBm”, and,
“dBmv”, and,
“ZDR”, or “ZDRu”, or “ZDRu”
delev_maxfloat. Dataset keyword
maximum elevation distance from nominal radar elevation where to
look for a sun hit signal [deg]. Default 1.5
dazim_maxfloat. Dataset keyword
maximum azimuth distance from nominal radar elevation where to
look for a sun hit signal [deg]. Default 1.5
elminfloat. Dataset keyword
minimum radar elevation where to look for sun hits [deg].
Default 1.
attgfloat. Dataset keyword
gaseous attenuation. Default None
sun_positionstring. Datset keyword
The function to compute the sun position to use. Can be ‘MF’ or
‘pysolar’
sun_hit_methodstr. Dataset keyword
Method used to estimate the power of the sun hit. Can be HS
(Hildebrand and Sekhon 1974) or Ivic (Ivic 2013)
rminfloat. Dataset keyword
minimum range where to look for a sun hit signal [m]. Used in HS
method. Default 50000.
hminfloat. Dataset keyword
minimum altitude where to look for a sun hit signal [m MSL].
Default 10000. The actual range from which a sun hit signal will
be search will be the minimum between rmin and the range from
which the altitude is higher than hmin. Used in HS method. Default
10000.
nbins_minint. Dataset keyword.
minimum number of range bins that have to contain signal to
consider the ray a potential sun hit. Default 20 for HS and 8000
for Ivic.
npulses_rayint
Default number of pulses used in the computation of the ray. If the
number of pulses is not in radar.instrument_parameters this will be
used instead. Used in Ivic method. Default 30
iterations: int
number of iterations in step 7 of Ivic method. Default 10.
max_std_pwrfloat. Dataset keyword
maximum standard deviation of the signal power to consider the
data a sun hit [dB]. Default 2. Used in HS method
max_std_zdrfloat. Dataset keyword
maximum standard deviation of the ZDR to consider the
data a sun hit [dB]. Default 2.
az_width_cofloat. Dataset keyword
co-polar antenna azimuth width (convoluted with sun width) [deg].
Default None
el_width_cofloat. Dataset keyword
co-polar antenna elevation width (convoluted with sun width)
[deg]. Default None
az_width_crossfloat. Dataset keyword
cross-polar antenna azimuth width (convoluted with sun width)
[deg]. Default None
el_width_crossfloat. Dataset keyword
cross-polar antenna elevation width (convoluted with sun width)
[deg]. Default None
ndaysint. Dataset keyword
number of days used in sun retrieval. Default 1
coeff_bandfloat. Dataset keyword
multiplicate coefficient to transform pulse width into receiver
bandwidth
frequencyfloat. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
frequency dependent parameters will not be computed
beamwidthfloat. Dataset keyword
the antenna beamwidth [deg]. If None that of the keys
radar_beam_width_h or radar_beam_width_v in attribute
instrument_parameters of the radar object will be used. If the key
or the attribute are not present the beamwidth dependent
parameters will not be computed
pulse_widthfloat. Dataset keyword
the pulse width [s]. If None that of the key
pulse_width in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the pulse width dependent parameters will not be computed
ray_angle_resfloat. Dataset keyword
the ray angle resolution [deg]. If None that of the key
ray_angle_res in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the ray angle resolution parameters will not be computed
AntennaGainH, AntennaGainVfloat. Dataset keyword
the horizontal (vertical) polarization antenna gain [dB].
If None that of the attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the ray angle resolution parameters will not be computed
returns
sun_hits_dictdict
dictionary containing a radar object, a sun_hits dict and a
sun_retrieval dictionary

SUNSCAN#

description

Processing of automatic sun scans for monitoring purposes of the radar system.

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain
“dBm”, and,
“dBmv”, and,
“ZDR”, or “ZDRu”, or “ZDRu”
delev_maxfloat. Dataset keyword
maximum elevation distance from nominal radar elevation where to
look for a sun hit signal [deg]. Default 1.5
dazim_maxfloat. Dataset keyword
maximum azimuth distance from nominal radar elevation where to
look for a sun hit signal [deg]. Default 1.5
elminfloat. Dataset keyword
minimum radar elevation where to look for sun hits [deg].
Default 1.
attgfloat. Dataset keyword
gaseous attenuation. Default None
sun_positionstring. Datset keyword
The function to compute the sun position to use. Can be ‘MF’ or
‘pysolar’
sun_hit_methodstr. Dataset keyword
Method used to estimate the power of the sun hit. Should be PSR. HS
(Hildebrand and Sekhon 1974) or Ivic (Ivic 2013) are implemented
but not tested.
n_noise_binsint. Dataset keyword
Number of bins to use for noise estimation
noise_thresholdfloat. Dataset keyword
Distance over the noise level in [dBm]
min_num_samplesint. Dataset keyword
Minimal number of samples above the noise level
max_fit_stddevfloat. Dataset keyword
Maximal allowed standard deviation for a valid sun fit [dBm]
do_second_noise_eststring (‘Yes’ or ‘No’). Dataset keyword
Used to trigger a second noise estimation based on the first fit
Requires another dataset keyword: n_indfar_bins
n_indfar_binsint. Dataset keyword
Number of samples most remote from the sun center
az_width_cofloat. Dataset keyword
co-polar antenna azimuth width (convoluted with sun width) [deg].
Default None
el_width_cofloat. Dataset keyword
co-polar antenna elevation width (convoluted with sun width)
[deg]. Default None
az_width_crossfloat. Dataset keyword
cross-polar antenna azimuth width (convoluted with sun width)
[deg]. Default None
el_width_crossfloat. Dataset keyword
cross-polar antenna elevation width (convoluted with sun width)
[deg]. Default None
rminfloat. Dataset keyword
minimum range where to look for a sun hit signal [m]. Used in HS
method. Default 50000.
hminfloat. Dataset keyword
minimum altitude where to look for a sun hit signal [m MSL].
Default 10000. The actual range from which a sun hit signal will
be search will be the minimum between rmin and the range from
which the altitude is higher than hmin. Used in HS method. Default
10000.
nbins_minint. Dataset keyword.
minimum number of range bins that have to contain signal to
consider the ray a potential sun hit. Default 20 for HS and 8000
for Ivic.
npulses_rayint
Default number of pulses used in the computation of the ray. If the
number of pulses is not in radar.instrument_parameters this will be
used instead. Used in Ivic method. Default 30
flat_reg_wlenint
Length of the flat region window [m]. Used in Ivic method. Default
8000.
iterations: int
number of iterations in step 7 of Ivic method. Default 10.
max_std_pwrfloat. Dataset keyword
maximum standard deviation of the signal power to consider the
data a sun hit [dB]. Default 2. Used in HS method
max_std_zdrfloat. Dataset keyword
maximum standard deviation of the ZDR to consider the
data a sun hit [dB]. Default 2.
ndaysint. Dataset keyword
number of days used in sun retrieval. Default 1
coeff_bandfloat. Dataset keyword
multiplicate coefficient to transform pulse width into receiver
bandwidth
frequencyfloat. Dataset keyword
the radar frequency [Hz]. If None that of the key
frequency in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
frequency dependent parameters will not be computed
beamwidthfloat. Dataset keyword
the antenna beamwidth [deg]. If None that of the keys
radar_beam_width_h or radar_beam_width_v in attribute
instrument_parameters of the radar object will be used. If the key
or the attribute are not present the beamwidth dependent
parameters will not be computed
pulse_widthfloat. Dataset keyword
the pulse width [s]. If None that of the key
pulse_width in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the pulse width dependent parameters will not be computed
ray_angle_resfloat. Dataset keyword
the ray angle resolution [deg]. If None that of the key
ray_angle_res in attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the ray angle resolution parameters will not be computed
AntennaGainH, AntennaGainVfloat. Dataset keyword
the horizontal (vertical) polarization antenna gain [dB].
If None that of the attribute instrument_parameters of the radar
object will be used. If the key or the attribute are not present
the ray angle resolution parameters will not be computed
returns
sunscan_datasetdict
dictionary containing a radar object, a sun_hits dict, a
sun_retrieval dictionary, field_name and timeinfo

TIMEAVG#

FLAG_TIME_AVG#

description

computes a flag field describing the conditions of the data used while averaging

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must be
“PhiDP” or “PhiDPc” (Optional, for PhiDP flagging), and,
“echoID” (Optional, for echoID flagging), and,
“hydro” (Optional, for no rain flagging), and,
“TEMP” (Optional, for solid precip flagging), and,
“H_ISO0” (Optional, also for solid precip flagging)
periodfloat. Dataset keyword
the period to average [s]. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
phidpmax: float. Dataset keyword
maximum PhiDP
beamwidthfloat. Dataset keyword
the antenna beamwidth [deg]. If None that of the keys
radar_beam_width_h or radar_beam_width_v in attribute
instrument_parameters of the radar object will be used. If the key
or the attribute are not present the beamwidth will be set to None
returns
new_datasetdict
dictionary containing the field “time_avg_flag”

TIME_AVG#

description

computes the temporal mean of a field

[Source]

parameters
datatypelist of string. Dataset keyword
Arbitrary data type supported by pyrad and contained in the radar data
periodfloat. Dataset keyword
the period to average [s]. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
lin_trans: int. Dataset keyword
If 1 apply linear transformation before averaging
returns
new_datasetdict
dictionary containing the statistic computed on the input field, as well as
“nsamples”

WEIGHTED_TIME_AVG#

description

computes the temporal mean of a field weighted by the reflectivity

[Source]

parameters
datatypelist of string. Dataset keyword
Arbitrary data type supported by pyrad and contained in the radar data, as well as
“dBZ” or “dBZc” or “dBuZ” or “dBZv” or “dBZvc” or “dBuZv” (refl. weighting)
periodfloat. Dataset keyword
the period to average [s]. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
returns
new_datasetdict
dictionary containing the statistic computed on the input field

TIME_STATS#

description

computes the temporal statistics of a field

[Source]

parameters
datatypelist of string. Dataset keyword
Arbitrary data type supported by pyrad and contained in the radar data
periodfloat. Dataset keyword
the period to average [s]. If -1 the statistics are going to be
performed over the entire data. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
lin_trans: int. Dataset keyword
If 1 apply linear transformation before averaging
use_nanbool. Dataset keyword
If true non valid data will be used
nan_valuefloat. Dataset keyword
The value of the non valid data. Default 0
stat: string. Dataset keyword
Statistic to compute: Can be mean, std, cov, min, max. Default
mean
returns
new_datasetdict
dictionary containing the statistic computed on the input field, as well as
“nsamples”, as well as
“sum2” (sum-squared) if stat in (cov, std), as well as

TIME_STATS2#

description

computes the temporal mean of a field

[Source]

parameters
datatypelist of string. Dataset keyword
Arbitrary data type supported by pyrad and contianed in the radar data
periodfloat. Dataset keyword
the period to average [s]. If -1 the statistics are going to be
performed over the entire data. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
stat: string. Dataset keyword
Statistic to compute: Can be median, mode, percentileXX
use_nanbool. Dataset keyword
If true non valid data will be used
nan_valuefloat. Dataset keyword
The value of the non valid data. Default 0
returns
new_datasetdict
dictionary containing the statistic computed on the input field, as well as
“nsamples”

RAIN_ACCU#

description

Computes rainfall accumulation fields

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, must contain,
“RR”
periodfloat. Dataset keyword
the period to average [s]. If -1 the statistics are going to be
performed over the entire data. Default 3600.
start_averagefloat. Dataset keyword
when to start the average [s from midnight UTC]. Default 0.
use_nanbool. Dataset keyword
If true non valid data will be used
nan_valuefloat. Dataset keyword
The value of the non valid data. Default 0
returns
new_datasetdict
dictionary containing the output field “Raccu”

TIMESERIES#

GRID_POINT_MEASUREMENT#

description

Obtains the grid data at a point location.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
latlonboolean. Dataset keyword
if True position is obtained from latitude, longitude information,
otherwise position is obtained from grid index (iz, iy, ix).
lonfloat. Dataset keyword
the longitude [deg]. Use when latlon is True.
latfloat. Dataset keyword
the latitude [deg]. Use when latlon is True.
altfloat. Dataset keyword
altitude [m MSL]. Use when latlon is True.
iz, iy, ixint. Dataset keyword
The grid indices. Use when latlon is False
latlonTolfloat. Dataset keyword
latitude-longitude tolerance to determine which grid point to use
[deg]
altTolfloat. Dataset keyword
Altitude tolerance to determine which grid point to use [deg]
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

GRID_MULTIPLE_POINTS#

description

Obtains the grid data at a point location.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement
coord_fnamestring
File name containing the points coordinates
latlonTolfloat. Dataset keyword
latitude-longitude tolerance to determine which grid point to use
[deg]
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

MULTIPLE_POINTS#

description

Obtains the radar data at multiple points. The points are defined in a file

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement,
can be any datatype supported by pyrad and available in the data
truealtboolean. Dataset keyword
if True the user input altitude is used to determine the point of
interest.
if False use the altitude at a given radar elevation ele over the
point of interest. Default is False.
coord_fnamestring
File name containing the points coordinates
alt_pointsfloat. Dataset keyword
altitude [m MSL]. Use when latlon is True.
ele_pointsfloat. Dataset keyword
radar elevation [deg]. Use when latlon is False or when latlon is
True and truealt is False
AziTolfloat. Dataset keyword
azimuthal tolerance to determine which radar azimuth to use [deg]
EleTolfloat. Dataset keyword
elevation tolerance to determine which radar elevation to use [deg]
RngTolfloat. Dataset keyword
range tolerance to determine which radar bin to use [m]
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

POINT_MEASUREMENT#

description

Obtains the radar data at a point location.

[Source]

parameters
datatypestring. Dataset keyword
The data type where we want to extract the point measurement,
can be any datatype supported by pyrad and available in the data
agg_methodstring. Dataset keyword
Which aggregation method to use to combine data that is within the
tolerance in AziTol, EleTol and RngTol
‘nearest’ : will only get nearest point to prescribed lon/lat/alt or
ele/azi/rng
‘nearest_valid’ : will only get the nearest valid point to prescribed
lon/lat/alt or ele/azi/rng (ignore missing values)
‘average’ : will average (while ignore missing values), all values
that fall within the tolerance in AziTol, EleTol and RngTol
‘none’ : will not perform any averaging and will get all values that
fall within the tolerance in AziTol, EleTol and RngTol, each
with its individual timestamp
Default is ‘nearest’
latlonboolean. Dataset keyword
if True position is obtained from latitude, longitude information,
otherwise position is obtained from antenna coordinates
(range, azimuth, elevation).
truealtboolean. Dataset keyword
if True the user input altitude is used to determine the point of
interest.
if False use the altitude at a given radar elevation ele over the
point of interest. Default is False.
lonfloat. Dataset keyword
the longitude [deg]. Use when latlon is True.
latfloat. Dataset keyword
the latitude [deg]. Use when latlon is True.
altfloat. Dataset keyword
altitude [m MSL]. Use when latlon is True and truealt is True
elefloat. Dataset keyword
radar elevation [deg]. Use when latlon is False or when latlon is
True and truealt is False
azifloat. Dataset keyword
radar azimuth [deg]. Use when latlon is False
rngfloat. Dataset keyword
range from radar [m]. Use when latlon is False
AziTolfloat. Dataset keyword
azimuthal tolerance to determine which radar azimuth to use [deg]
EleTolfloat. Dataset keyword
elevation tolerance to determine which radar elevation to use [deg]
RngTolfloat. Dataset keyword
range tolerance to determine which radar bin to use [m]
fill_valuefloat or None
If not None masked values are going to be filled by this value
returns
new_datasetdict
dictionary containing the data and metadata at the point of interest

TRAJ_ANTENNA_PATTERN#

description

Process a new array of data volumes considering a plane trajectory. As result a timeseries with the values transposed for a given antenna pattern is created. The result is created when the LAST flag is set.

[Source]

parameters


returns
trajectoryTrajectory object
Object holding time series

TRAJ_ATPLANE#

description

Return time series according to trajectory

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any datatype supported by pyrad
and available in the radar data
data_is_logdict. Dataset keyword
Dictionary specifying for each field if it is in log (True) or
linear units (False). Default False
ang_tolfloat. Dataset keyword
Factor that multiplies the angle resolution. Used when determining
the neighbouring rays. Default 1.2
az_tol, el_tolfloat
azimuth and elevation tolerance (deg). Samples that have values
beyond this tolerance from the limits in azimuth and elevation of
the radar will be considered outside the sector. Default 3.
timeformatstr or None
time format of the time series output file
returns
trajectoryTrajectory object
Object holding time series

TRAJ_LIGHTNING#

description

Return time series according to lightning trajectory

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any datatype supported by pyrad
and available in the radar data
data_is_logdict. Dataset keyword
Dictionary specifying for each field if it is in log (True) or
linear units (False). Default False
ang_tolfloat. Dataset keyword
Factor that multiplies the angle resolution. Used when determining
the neighbouring rays. Default 1.2
az_tol, el_tolfloat
azimuth and elevation tolerance (deg). Samples that have values
beyond this tolerance from the limits in azimuth and elevation of
the radar will be considered outside the sector. Default 3.
returns
trajectoryTrajectory object
Object holding time series

TRAJ_ONLY#

TRAJ#

description

Return trajectory

[Source]

parameters
datatypelist of string. Dataset keyword
The input data types, can be any datatype supported by pyrad
and available in the radar data
returns
new_datasetTrajectory object
radar object