pyart.retrieve#

Description

Radar Retrievals (pyart.retrieve)#

Radar retrievals.

Composite Reflectivity#

composite_reflectivity(radar[, field, ...])

Composite Reflectivity

Melting Layer (ML) Detection#

detect_ml(radar[, gatefilter, fill_value, ...])

Detects the melting layer (ML) using the reflectivity and copolar correlation coefficient.

melting_layer_giangrande(radar[, nVol, ...])

Detects the melting layer following the approach by Giangrande et al (2008)

melting_layer_hydroclass(radar[, ...])

Using the results of the hydrometeor classification by Besic et al. estimates the position of the range gates respect to the melting layer, the melting layer top and bottom height and the distance of the range gate with respect to the freezing level.

_get_res_vol_sides(radar)

Computes the height of the lower left and upper right points of the range resolution volume.

compute_apparent_profile(radar[, ml_top, ...])

Computes the apparent profile of RhoHV

melting_layer_mf(radar[, nvalid_min, ...])

Detects the melting layer following the approach implemented at Meteo-France

get_ml_rng_limits(rng_left_km, rng_right_km, ...)

get the minimum and maximum range affected by the melting layer

get_iso0_val(radar[, temp_ref_field, ...])

Computes the altitude of the iso-0°

KDP Processing#

kdp_maesaka(radar[, gatefilter, method, ...])

Compute the specific differential phase (KDP) from corrected (e.g., unfolded) total differential phase data based on the variational method outlined in Maesaka et al. (2012).

kdp_schneebeli(radar[, gatefilter, ...])

Estimates Kdp with the Kalman filter method by Schneebeli and al.

kdp_vulpiani(radar[, gatefilter, ...])

Estimates Kdp with the Vulpiani method for a 2D array of psidp measurements with the first dimension being the distance from radar and the second dimension being the angles (azimuths for PPI, elev for RHI).The input psidp is assumed to be pre-filtered (for ex.

kdp_leastsquare_single_window(radar[, ...])

Compute the specific differential phase (KDP) from differential phase data using a piecewise least square method.

kdp_leastsquare_double_window(radar[, ...])

Compute the specific differential phase (KDP) from differential phase data using a piecewise least square method.

Echo Classification#

conv_strat_yuter(grid[, dx, dy, level_m, ...])

Partition reflectivity into convective-stratiform using the Yuter et al. (2005) and Yuter and Houze (1997) algorithm.

steiner_conv_strat(grid[, dx, dy, intense, ...])

Partition reflectivity into convective-stratiform using the Steiner et al. (1995) algorithm.

hydroclass_semisupervised(radar[, ...])

Classifies precipitation echoes following the approach by Besic et al (2016).

get_freq_band(freq)

Returns the frequency band name (S, C, X, ...).

data_for_centroids(radar[, lapse_rate, ...])

Prepares the data to compute the centroids of the hydrometeor classification

compute_centroids(features_matrix[, weight, ...])

Given a features matrix computes the centroids

select_samples(fm, rg[, nbins, pdf_zh_max, ...])

Selects the data to be used to compute the centroids

determine_medoids(medoids_dict, var_names, ...)

Computes the final medoids from the medoids found at each iteration

_destandardize(data, field_name[, mx, mn, ...])

destandardize the data

synthetic_obs_distribution(rg, var_names, ...)

Gets the samples corresponding to the theoretical probability density function of each hydrometeor and variable

feature_detection(grid[, dx, dy, level_m, ...])

This function can be used to detect features in a field (e.g.

conv_strat_raut(grid, refl_field[, ...])

A computationally efficient method to classify radar echoes into convective cores, mixed convection, and stratiform regions for gridded radar reflectivity field.

Gate ID#

map_profile_to_gates(profile, heights, radar)

Given a profile of a variable map it to the gates of radar assuming 4/3Re.

fetch_radar_time_profile(sonde_dset, radar)

Extract the correct profile from a interpolated sonde.

Simple Moment Calculations#

calculate_snr_from_reflectivity(radar[, ...])

Calculate the signal to noise ratio, in dB, from the reflectivity field.

calculate_velocity_texture(radar[, ...])

Derive the texture of the velocity field.

compute_snr(radar[, refl_field, ...])

Computes SNR from a reflectivity field and the noise in dBZ.

compute_l(radar[, rhohv_field, l_field])

Computes Rhohv in logarithmic scale according to ll=-log10(1-RhoHV).

compute_cdr(radar[, rhohv_field, zdr_field, ...])

Computes the Circular Depolarization Ratio.

compute_refl_from_zdr(radar[, zdr_field, ...])

Computes the reflectivity at the orthogonal polarization from zdr and the reflectivity at a given polarization

compute_noisedBZ(nrays, noisedBZ_val, ...[, ...])

Computes noise in dBZ from reference noise value.

compute_signal_power(radar[, lmf, attg, ...])

Computes received signal power OUTSIDE THE RADOME in dBm from a reflectivity field.

get_coeff_attg(freq)

get the 1-way gas attenuation for a particular frequency

compute_vol_refl(radar[, kw, freq, ...])

Computes the volumetric reflectivity from the effective reflectivity factor

compute_bird_density(radar[, sigma_bird, ...])

Computes the bird density from the volumetric reflectivity

atmospheric_gas_att(freq, elev, rng)

Computes the one-way atmospheric gas attenuation [dB] according to the empirical formula in Doviak and Zrnic (1993) pp 44.

compute_ccor(radar[, filt_field, ...])

Computes the clutter correction ratio (CCOR), i.e. the ratio between the signal without Doppler filtering and the signal with Doppler filtering.

compute_rcs(radar[, kw2, pulse_width, ...])

Computes the radar cross-section (assuming a point target) from radar reflectivity.

compute_rcs_from_pr(radar[, lmf, attg, ...])

Computes the radar cross-section (assuming a point target) from radar reflectivity by first computing the received power and then the RCS from it.

compute_radial_noise_hs(radar[, ind_rmin, ...])

Computes radial noise in dBm from signal power using the algorithm from Hildebrand and Sekhon 1974

compute_radial_noise_ivic(radar[, ...])

Computes radial noise in dBm from signal power using the algorithm described in Ivic et al. 2013.

QPE (Quantitative Precipitation Estimation)#

est_rain_rate_z(radar[, alpha, beta, ...])

Estimates rainfall rate from reflectivity using a power law.

est_rain_rate_zpoly(radar[, refl_field, ...])

Estimates rainfall rate from reflectivity using a polynomial Z-R relation developed at McGill University.

est_rain_rate_kdp(radar[, alpha, beta, ...])

Estimates rainfall rate from kdp using alpha power law.

est_rain_rate_a(radar[, alpha, beta, ...])

Estimates rainfall rate from specific attenuation using alpha power law.

est_rain_rate_zkdp(radar[, alphaz, betaz, ...])

Estimates rainfall rate from a blending of power law r-kdp and r-z relations.

est_rain_rate_za(radar[, alphaz, betaz, ...])

Estimates rainfall rate from a blending of power law r-alpha and r-z relations.

est_rain_rate_hydro(radar[, alphazr, ...])

Estimates rainfall rate using different relations between R and the polarimetric variables depending on the hydrometeor type.

Advection#

grid_displacement_pc(grid1, grid2, field, level)

Calculate the grid displacement using phase correlation.

grid_shift(grid, advection[, trim_edges, ...])

Shift a grid by a certain number of pixels.

Wind Estimation#

est_wind_vel(radar[, vert_proj, vel_field, ...])

Estimates wind velocity.

est_vertical_windshear(radar[, az_tol, ...])

Estimates wind shear.

est_wind_profile(radar[, npoints_min, ...])

Estimates the vertical wind profile using VAD techniques

est_vertical_windshear_lidar(radar[, ...])

Estimates wind shear.

VAD (Velocity Azimuth Display)#

vad_browning(radar, velocity[, z_want, ...])

Velocity azimuth display.

vad_michelson(radar[, vel_field, z_want, ...])

Velocity azimuth display.

QVP (Quasi Vertical Profile) Retrievals#

quasi_vertical_profile(radar[, ...])

Quasi Vertical Profile.

compute_qvp(radar, field_names[, ref_time, ...])

Computes quasi vertical profiles.

compute_rqvp(radar, field_names[, ref_time, ...])

Computes range-defined quasi vertical profiles.

compute_evp(radar, field_names, lon, lat[, ...])

Computes enhanced vertical profiles.

compute_svp(radar, field_names, lon, lat, angle)

Computes slanted vertical profiles.

compute_vp(radar, field_names, lon, lat[, ...])

Computes vertical profiles.

compute_ts_along_coord(radar, field_names[, ...])

Computes time series along a particular antenna coordinate, i.e. along azimuth, elevation or range.

Spectra Processing#

compute_spectral_power(spectra[, units, ...])

Computes the spectral power from the complex spectra in ADU.

compute_spectral_phase(spectra[, signal_field])

Computes the spectral phase from the complex spectra in ADU

compute_spectral_noise(spectra[, units, ...])

Computes the spectral noise power from the complex spectra in ADU.

compute_spectral_reflectivity(spectra[, ...])

Computes the spectral reflectivity from the complex spectra in ADU or from the signal power in ADU.

compute_spectral_differential_reflectivity(spectra)

Computes the spectral differential reflectivity from the complex spectras or the power in ADU

compute_spectral_differential_phase(spectra)

Computes the spectral differential reflectivity from the complex spectras in ADU or sRhoHV

compute_spectral_rhohv(spectra[, ...])

Computes the spectral RhoHV from the complex spectras in ADU

compute_reflectivity(spectra[, sdBZ_field])

Computes the reflectivity from the spectral reflectivity

compute_differential_reflectivity(spectra[, ...])

Computes the differential reflectivity from the horizontal and vertical spectral reflectivity

compute_differential_phase(spectra[, ...])

Computes the differential phase from the spectral differential phase and the spectral reflectivity

compute_rhohv(spectra[, use_rhohv, ...])

Computes RhoHV from the horizontal and vertical spectral reflectivity or from sRhoHV and the spectral powers

compute_Doppler_velocity(spectra[, sdBZ_field])

Computes the Doppler velocity from the spectral reflectivity

compute_Doppler_width(spectra[, sdBZ_field])

Computes the Doppler width from the spectral reflectivity

compute_pol_variables(spectra, fields_list)

Computes the polarimetric variables from the complex spectra in ADU or the spectral powers and spectral RhoHV

compute_iq(spectra, fields_in_list, ...[, ...])

Computes the IQ data from the spectra through an inverse Fourier transform

compute_noise_power(spectra[, units, navg, ...])

Computes the noise power from the complex spectra in ADU.

dealias_spectra(spectra[, pwr_field, ...])

Performs a dealiasing of spectra data, assuming at most one fold

IQ Processing#

compute_reflectivity_iq(radar[, ...])

Computes the reflectivity from the IQ signal data

compute_differential_reflectivity_iq(radar)

Computes the differential reflectivity from the horizontal and vertical IQ data

compute_differential_phase_iq(radar[, ...])

Computes the differential phase from the horizontal and vertical channels IQ data

compute_rhohv_iq(radar[, subtract_noise, ...])

Computes RhoHV from the horizontal and vertical channels IQ data

compute_Doppler_velocity_iq(radar[, ...])

Computes the Doppler velocity from the IQ data

compute_Doppler_width_iq(radar[, ...])

Computes the Doppler width from the IQ data

compute_pol_variables_iq(radar, fields_list)

Computes the polarimetric variables from the IQ signals in ADU

compute_spectra(radar, fields_in_list, ...)

Computes the spectra from IQ data through a Fourier transform

compute_mean_phase_iq(radar[, signal_field])

Computes the differential phase from the horizontal or vertical channel IQ data

compute_st1_iq(radar[, signal_field])

Computes the statistical test one lag fluctuation from the horizontal or vertical channel IQ data

compute_st2_iq(radar[, signal_field])

Computes the statistical test two lag fluctuation from the horizontal or vertical channel IQ data

compute_wbn_iq(radar[, signal_field])

Computes the wide band noise from the horizontal or vertical channel IQ data

Visibility estimation#

gecsx(radar, radar_specs, dem_grid[, ...])

Estimate the radar visibility and ground clutter echoes from a digital elevation model

Functions

atmospheric_gas_att(freq, elev, rng)

Computes the one-way atmospheric gas attenuation [dB] according to the empirical formula in Doviak and Zrnic (1993) pp 44.

calculate_snr_from_reflectivity(radar[, ...])

Calculate the signal to noise ratio, in dB, from the reflectivity field.

calculate_velocity_texture(radar[, ...])

Derive the texture of the velocity field.

composite_reflectivity(radar[, field, ...])

Composite Reflectivity

compute_Doppler_velocity(spectra[, sdBZ_field])

Computes the Doppler velocity from the spectral reflectivity

compute_Doppler_velocity_iq(radar[, ...])

Computes the Doppler velocity from the IQ data

compute_Doppler_width(spectra[, sdBZ_field])

Computes the Doppler width from the spectral reflectivity

compute_Doppler_width_iq(radar[, ...])

Computes the Doppler width from the IQ data

compute_apparent_profile(radar[, ml_top, ...])

Computes the apparent profile of RhoHV

compute_bird_density(radar[, sigma_bird, ...])

Computes the bird density from the volumetric reflectivity

compute_ccor(radar[, filt_field, ...])

Computes the clutter correction ratio (CCOR), i.e. the ratio between the signal without Doppler filtering and the signal with Doppler filtering.

compute_cdr(radar[, rhohv_field, zdr_field, ...])

Computes the Circular Depolarization Ratio.

compute_centroids(features_matrix[, weight, ...])

Given a features matrix computes the centroids

compute_differential_phase(spectra[, ...])

Computes the differential phase from the spectral differential phase and the spectral reflectivity

compute_differential_phase_iq(radar[, ...])

Computes the differential phase from the horizontal and vertical channels IQ data

compute_differential_reflectivity(spectra[, ...])

Computes the differential reflectivity from the horizontal and vertical spectral reflectivity

compute_differential_reflectivity_iq(radar)

Computes the differential reflectivity from the horizontal and vertical IQ data

compute_evp(radar, field_names, lon, lat[, ...])

Computes enhanced vertical profiles.

compute_iq(spectra, fields_in_list, ...[, ...])

Computes the IQ data from the spectra through an inverse Fourier transform

compute_l(radar[, rhohv_field, l_field])

Computes Rhohv in logarithmic scale according to ll=-log10(1-RhoHV).

compute_mean_phase_iq(radar[, signal_field])

Computes the differential phase from the horizontal or vertical channel IQ data

compute_noise_power(spectra[, units, navg, ...])

Computes the noise power from the complex spectra in ADU.

compute_noisedBZ(nrays, noisedBZ_val, ...[, ...])

Computes noise in dBZ from reference noise value.

compute_pol_variables(spectra, fields_list)

Computes the polarimetric variables from the complex spectra in ADU or the spectral powers and spectral RhoHV

compute_pol_variables_iq(radar, fields_list)

Computes the polarimetric variables from the IQ signals in ADU

compute_qvp(radar, field_names[, ref_time, ...])

Computes quasi vertical profiles.

compute_radial_noise_hs(radar[, ind_rmin, ...])

Computes radial noise in dBm from signal power using the algorithm from Hildebrand and Sekhon 1974

compute_radial_noise_ivic(radar[, ...])

Computes radial noise in dBm from signal power using the algorithm described in Ivic et al. 2013.

compute_rcs(radar[, kw2, pulse_width, ...])

Computes the radar cross-section (assuming a point target) from radar reflectivity.

compute_rcs_from_pr(radar[, lmf, attg, ...])

Computes the radar cross-section (assuming a point target) from radar reflectivity by first computing the received power and then the RCS from it.

compute_refl_from_zdr(radar[, zdr_field, ...])

Computes the reflectivity at the orthogonal polarization from zdr and the reflectivity at a given polarization

compute_reflectivity(spectra[, sdBZ_field])

Computes the reflectivity from the spectral reflectivity

compute_reflectivity_iq(radar[, ...])

Computes the reflectivity from the IQ signal data

compute_rhohv(spectra[, use_rhohv, ...])

Computes RhoHV from the horizontal and vertical spectral reflectivity or from sRhoHV and the spectral powers

compute_rhohv_iq(radar[, subtract_noise, ...])

Computes RhoHV from the horizontal and vertical channels IQ data

compute_rqvp(radar, field_names[, ref_time, ...])

Computes range-defined quasi vertical profiles.

compute_signal_power(radar[, lmf, attg, ...])

Computes received signal power OUTSIDE THE RADOME in dBm from a reflectivity field.

compute_snr(radar[, refl_field, ...])

Computes SNR from a reflectivity field and the noise in dBZ.

compute_spectra(radar, fields_in_list, ...)

Computes the spectra from IQ data through a Fourier transform

compute_spectral_differential_phase(spectra)

Computes the spectral differential reflectivity from the complex spectras in ADU or sRhoHV

compute_spectral_differential_reflectivity(spectra)

Computes the spectral differential reflectivity from the complex spectras or the power in ADU

compute_spectral_noise(spectra[, units, ...])

Computes the spectral noise power from the complex spectra in ADU.

compute_spectral_phase(spectra[, signal_field])

Computes the spectral phase from the complex spectra in ADU

compute_spectral_power(spectra[, units, ...])

Computes the spectral power from the complex spectra in ADU.

compute_spectral_reflectivity(spectra[, ...])

Computes the spectral reflectivity from the complex spectra in ADU or from the signal power in ADU.

compute_spectral_rhohv(spectra[, ...])

Computes the spectral RhoHV from the complex spectras in ADU

compute_st1_iq(radar[, signal_field])

Computes the statistical test one lag fluctuation from the horizontal or vertical channel IQ data

compute_st2_iq(radar[, signal_field])

Computes the statistical test two lag fluctuation from the horizontal or vertical channel IQ data

compute_svp(radar, field_names, lon, lat, angle)

Computes slanted vertical profiles.

compute_ts_along_coord(radar, field_names[, ...])

Computes time series along a particular antenna coordinate, i.e. along azimuth, elevation or range.

compute_vol_refl(radar[, kw, freq, ...])

Computes the volumetric reflectivity from the effective reflectivity factor

compute_vp(radar, field_names, lon, lat[, ...])

Computes vertical profiles.

compute_wbn_iq(radar[, signal_field])

Computes the wide band noise from the horizontal or vertical channel IQ data

conv_strat_raut(grid, refl_field[, ...])

A computationally efficient method to classify radar echoes into convective cores, mixed convection, and stratiform regions for gridded radar reflectivity field.

conv_strat_yuter(grid[, dx, dy, level_m, ...])

Partition reflectivity into convective-stratiform using the Yuter et al. (2005) and Yuter and Houze (1997) algorithm.

data_for_centroids(radar[, lapse_rate, ...])

Prepares the data to compute the centroids of the hydrometeor classification

dealias_spectra(spectra[, pwr_field, ...])

Performs a dealiasing of spectra data, assuming at most one fold

detect_ml(radar[, gatefilter, fill_value, ...])

Detects the melting layer (ML) using the reflectivity and copolar correlation coefficient.

determine_medoids(medoids_dict, var_names, ...)

Computes the final medoids from the medoids found at each iteration

est_rain_rate_a(radar[, alpha, beta, ...])

Estimates rainfall rate from specific attenuation using alpha power law.

est_rain_rate_hydro(radar[, alphazr, ...])

Estimates rainfall rate using different relations between R and the polarimetric variables depending on the hydrometeor type.

est_rain_rate_kdp(radar[, alpha, beta, ...])

Estimates rainfall rate from kdp using alpha power law.

est_rain_rate_z(radar[, alpha, beta, ...])

Estimates rainfall rate from reflectivity using a power law.

est_rain_rate_za(radar[, alphaz, betaz, ...])

Estimates rainfall rate from a blending of power law r-alpha and r-z relations.

est_rain_rate_zkdp(radar[, alphaz, betaz, ...])

Estimates rainfall rate from a blending of power law r-kdp and r-z relations.

est_rain_rate_zpoly(radar[, refl_field, ...])

Estimates rainfall rate from reflectivity using a polynomial Z-R relation developed at McGill University.

est_vertical_windshear(radar[, az_tol, ...])

Estimates wind shear.

est_vertical_windshear_lidar(radar[, ...])

Estimates wind shear.

est_wind_profile(radar[, npoints_min, ...])

Estimates the vertical wind profile using VAD techniques

est_wind_vel(radar[, vert_proj, vel_field, ...])

Estimates wind velocity.

feature_detection(grid[, dx, dy, level_m, ...])

This function can be used to detect features in a field (e.g.

fetch_radar_time_profile(sonde_dset, radar)

Extract the correct profile from a interpolated sonde.

gecsx(radar, radar_specs, dem_grid[, ...])

Estimate the radar visibility and ground clutter echoes from a digital elevation model

get_coeff_attg(freq)

get the 1-way gas attenuation for a particular frequency

get_freq_band(freq)

Returns the frequency band name (S, C, X, ...).

get_iso0_val(radar[, temp_ref_field, ...])

Computes the altitude of the iso-0°

get_ml_rng_limits(rng_left_km, rng_right_km, ...)

get the minimum and maximum range affected by the melting layer

grid_displacement_pc(grid1, grid2, field, level)

Calculate the grid displacement using phase correlation.

grid_shift(grid, advection[, trim_edges, ...])

Shift a grid by a certain number of pixels.

hydroclass_semisupervised(radar[, ...])

Classifies precipitation echoes following the approach by Besic et al (2016).

kdp_leastsquare_double_window(radar[, ...])

Compute the specific differential phase (KDP) from differential phase data using a piecewise least square method.

kdp_leastsquare_single_window(radar[, ...])

Compute the specific differential phase (KDP) from differential phase data using a piecewise least square method.

kdp_maesaka(radar[, gatefilter, method, ...])

Compute the specific differential phase (KDP) from corrected (e.g., unfolded) total differential phase data based on the variational method outlined in Maesaka et al. (2012).

kdp_schneebeli(radar[, gatefilter, ...])

Estimates Kdp with the Kalman filter method by Schneebeli and al.

kdp_vulpiani(radar[, gatefilter, ...])

Estimates Kdp with the Vulpiani method for a 2D array of psidp measurements with the first dimension being the distance from radar and the second dimension being the angles (azimuths for PPI, elev for RHI).The input psidp is assumed to be pre-filtered (for ex.

map_profile_to_gates(profile, heights, radar)

Given a profile of a variable map it to the gates of radar assuming 4/3Re.

melting_layer_giangrande(radar[, nVol, ...])

Detects the melting layer following the approach by Giangrande et al (2008)

melting_layer_hydroclass(radar[, ...])

Using the results of the hydrometeor classification by Besic et al. estimates the position of the range gates respect to the melting layer, the melting layer top and bottom height and the distance of the range gate with respect to the freezing level.

melting_layer_mf(radar[, nvalid_min, ...])

Detects the melting layer following the approach implemented at Meteo-France

quasi_vertical_profile(radar[, ...])

Quasi Vertical Profile.

select_samples(fm, rg[, nbins, pdf_zh_max, ...])

Selects the data to be used to compute the centroids

steiner_conv_strat(grid[, dx, dy, intense, ...])

Partition reflectivity into convective-stratiform using the Steiner et al. (1995) algorithm.

synthetic_obs_distribution(rg, var_names, ...)

Gets the samples corresponding to the theoretical probability density function of each hydrometeor and variable

texture_of_complex_phase(radar[, ...])

Calculate the texture of the differential phase field.

vad_browning(radar, velocity[, z_want, ...])

Velocity azimuth display.

vad_michelson(radar[, vel_field, z_want, ...])

Velocity azimuth display.