pyrad.proc#

Description

Dataset processing (pyrad.proc)#

Initiate the dataset processing.

Auxiliary functions#

get_process_func(dataset_type, dsname)

Maps the dataset type into its processing function and data set format associated.

process_raw(procstatus, dscfg[, radar_list])

Dummy function that returns the initial input data set

process_save_radar(procstatus, dscfg[, ...])

Dummy function that allows to save the entire radar object

process_fixed_rng(procstatus, dscfg[, ...])

Obtains radar data at a fixed range

process_fixed_rng_span(procstatus, dscfg[, ...])

For each azimuth-elevation gets the data within a fixed range span and computes a user-defined statistic: mean, min, max, mode, median

process_roi(procstatus, dscfg[, radar_list])

Obtains the radar data at a region of interest defined by a TRT file or by the user.

process_keep_roi(procstatus, dscfg[, radar_list])

keep only data within a region of interest and mask anything else

process_roi2(procstatus, dscfg[, radar_list])

Obtains the radar data at a region of interest defined by a TRT file or by the user.

process_azimuthal_average(procstatus, dscfg)

Averages radar data in azimuth obtaining and RHI as a result

process_moving_azimuthal_average(procstatus, ...)

Applies a moving azimuthal average to the radar data

process_radar_resampling(procstatus, dscfg)

Resamples the radar data to mimic another radar with different geometry and antenna pattern

process_vol_to_grid(procstatus, dscfg[, ...])

Function to convert polar data into a Cartesian grid

Gridded data functions#

process_raw_grid(procstatus, dscfg[, radar_list])

Dummy function that returns the initial input data set

process_grid(procstatus, dscfg[, radar_list])

Puts the radar data in a regular grid

process_grid_point(procstatus, dscfg[, ...])

Obtains the grid data at a point location.

process_grid_multiple_points(procstatus, dscfg)

Obtains the grid data at a point location.

process_grid_time_stats(procstatus, dscfg[, ...])

computes the temporal statistics of a field

process_grid_time_stats2(procstatus, dscfg)

computes temporal statistics of a field

process_grid_rainfall_accumulation(...[, ...])

computes rainfall accumulation fields

process_grid_texture(procstatus, dscfg[, ...])

Computes the 2D texture of a gridded field

process_grid_fields_diff(procstatus, dscfg)

Computes grid field differences

process_grid_mask(procstatus, dscfg[, ...])

Mask data.

process_normalize_luminosity(procstatus, dscfg)

Normalize the data by the sinus of the sun elevation.

process_pixel_filter(procstatus, dscfg[, ...])

Masks all pixels that are not of the class specified in keyword pixel_type

Spectral data functions#

process_raw_spectra(procstatus, dscfg[, ...])

Dummy function that returns the initial input data set

process_spectra_point(procstatus, dscfg[, ...])

Obtains the spectra or IQ data at a point location.

process_filter_0Doppler(procstatus, dscfg[, ...])

Function to filter the 0-Doppler line bin and neighbours of the Doppler spectra

process_filter_spectra_noise(procstatus, dscfg)

Filter the noise of the Doppler spectra by clipping any data below the noise level plus a margin

process_filter_srhohv(procstatus, dscfg[, ...])

Filter Doppler spectra as a function of spectral RhoHV

process_spectra_ang_avg(procstatus, dscfg[, ...])

Function to average the spectra over the rays.

process_spectral_power(procstatus, dscfg[, ...])

Computes the spectral power

process_spectral_noise(procstatus, dscfg[, ...])

Computes the spectral noise

process_spectral_phase(procstatus, dscfg[, ...])

Computes the spectral phase

process_spectral_reflectivity(procstatus, dscfg)

Computes spectral reflectivity

process_spectral_differential_reflectivity(...)

Computes spectral differential reflectivity

process_spectral_differential_phase(...[, ...])

Computes the spectral differential phase

process_spectral_rhohv(procstatus, dscfg[, ...])

Computes the spectral RhoHV

process_sunscan(procstatus, dscfg[, radar_list])

Processing of automatic sun scans for monitoring purposes of the radar system.

process_pol_variables(procstatus, dscfg[, ...])

Computes the polarimetric variables from the complex spectra

process_noise_power(procstatus, dscfg[, ...])

Computes the noise power from the spectra

process_reflectivity(procstatus, dscfg[, ...])

Computes reflectivity from the spectral reflectivity

process_differential_reflectivity(...[, ...])

Computes differential reflectivity from the horizontal and vertical spectral reflectivity

process_differential_phase(procstatus, dscfg)

Computes the differential phase from the spectral differential phase and the spectral reflectivity

process_rhohv(procstatus, dscfg[, radar_list])

Computes RhoHV from the complex spectras

process_Doppler_velocity(procstatus, dscfg)

Compute the Doppler velocity from the spectral reflectivity

process_Doppler_width(procstatus, dscfg[, ...])

Compute the Doppler spectrum width from the spectral reflectivity

process_ifft(procstatus, dscfg[, radar_list])

Compute the Doppler spectrum width from the spectral reflectivity

IQ data functions#

process_raw_iq(procstatus, dscfg[, radar_list])

Dummy function that returns the initial input data set

process_pol_variables_iq(procstatus, dscfg)

Computes the polarimetric variables from the IQ data

process_reflectivity_iq(procstatus, dscfg[, ...])

Computes reflectivity from the IQ data

process_st1_iq(procstatus, dscfg[, radar_list])

Computes the statistical test one lag fluctuation from the horizontal or vertical IQ data

process_st2_iq(procstatus, dscfg[, radar_list])

Computes the statistical test two lag fluctuation from the horizontal or vertical IQ data

process_wbn_iq(procstatus, dscfg[, radar_list])

Computes the wide band noise from the horizontal or vertical IQ data

process_differential_reflectivity_iq(...[, ...])

Computes differential reflectivity from the horizontal and vertical IQ data

process_mean_phase_iq(procstatus, dscfg[, ...])

Computes the mean phase from the horizontal or vertical IQ data

process_differential_phase_iq(procstatus, dscfg)

Computes the differential phase from the horizontal and vertical IQ data

process_rhohv_iq(procstatus, dscfg[, radar_list])

Computes RhoHV from the horizontal and vertical IQ data

process_Doppler_velocity_iq(procstatus, dscfg)

Compute the Doppler velocity from the spectral reflectivity

process_Doppler_width_iq(procstatus, dscfg)

Compute the Doppler spectrum width from the spectral reflectivity

process_fft(procstatus, dscfg[, radar_list])

Compute the Doppler spectra form the IQ data with a Fourier transform

Echo classification and filtering#

process_echo_id(procstatus, dscfg[, radar_list])

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Precipitation

process_birds_id(procstatus, dscfg[, radar_list])

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Birds

process_clt_to_echo_id(procstatus, dscfg[, ...])

Converts clutter exit code from rad4alp into pyrad echo ID

process_vstatus_to_echo_id(procstatus, dscfg)

Converts velocity status from lidar data into pyrad echo ID

process_hydro_mf_to_echo_id(procstatus, dscfg)

Converts MF hydrometeor classification into pyrad echo ID

process_hydro_mf_to_hydro(procstatus, dscfg)

Converts the hydrometeor classification from Météo France to that of MeteoSwiss

process_echo_filter(procstatus, dscfg[, ...])

Masks all echo types that are not of the class specified in keyword echo_type

process_cdf(procstatus, dscfg[, radar_list])

Collects the fields necessary to compute the Cumulative Distribution Function

process_filter_snr(procstatus, dscfg[, ...])

filters out low SNR echoes

process_filter_visibility(procstatus, dscfg)

filters out rays gates with low visibility and corrects the reflectivity

process_gatefilter(procstatus, dscfg[, ...])

filters out all available moments based on specified upper/lower bounds for moments based on the Py-ART gatefilter.

process_outlier_filter(procstatus, dscfg[, ...])

filters out gates which are outliers respect to the surrounding

process_filter_vol2bird(procstatus, dscfg[, ...])

Masks all echo types that have been identified as non-biological by vol2bird

process_gate_filter_vol2bird(procstatus, dscfg)

Adds filter on range gate values to the vol2bird filter

process_hydroclass(procstatus, dscfg[, ...])

Classifies precipitation echoes

process_centroids(procstatus, dscfg[, ...])

Computes centroids for the semi-supervised hydrometeor classification

process_melting_layer(procstatus, dscfg[, ...])

Detects the melting layer

process_filter_vel_diff(procstatus, dscfg[, ...])

filters out range gates that could not be used for Doppler velocity estimation

process_zdr_column(procstatus, dscfg[, ...])

Detects ZDR columns

Phase processing and attenuation correction#

process_correct_phidp0(procstatus, dscfg[, ...])

corrects phidp of the system phase

process_smooth_phidp_single_window(...[, ...])

corrects phidp of the system phase and smoothes it using one window

process_smooth_phidp_double_window(...[, ...])

corrects phidp of the system phase and smoothes it using one window

process_kdp_leastsquare_single_window(...[, ...])

Computes specific differential phase using a piecewise least square method

process_kdp_leastsquare_double_window(...[, ...])

Computes specific differential phase using a piecewise least square method

process_phidp_kdp_Vulpiani(procstatus, dscfg)

Computes specific differential phase and differential phase using the method developed by Vulpiani et al. The data is assumed to be clutter free and monotonous.

process_phidp_kdp_Kalman(procstatus, dscfg)

Computes specific differential phase and differential phase using the Kalman filter as proposed by Schneebeli et al. The data is assumed to be clutter free and continous.

process_phidp_kdp_Maesaka(procstatus, dscfg)

Estimates PhiDP and KDP using the method by Maesaka.

process_phidp_kdp_lp(procstatus, dscfg[, ...])

Estimates PhiDP and KDP using a linear programming algorithm.

process_attenuation(procstatus, dscfg[, ...])

Computes specific attenuation and specific differential attenuation using the Z-Phi method and corrects reflectivity and differential reflectivity

Monitoring, calibration and noise correction#

process_correct_bias(procstatus, dscfg[, ...])

Corrects a bias on the data

process_correct_noise_rhohv(procstatus, dscfg)

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Precipitation

process_rhohv_rain(procstatus, dscfg[, ...])

Keeps only suitable data to evaluate the 80 percentile of RhoHV in rain

process_zdr_precip(procstatus, dscfg[, ...])

Keeps only suitable data to evaluate the differential reflectivity in moderate rain or precipitation (for vertical scans)

process_zdr_snow(procstatus, dscfg[, radar_list])

Keeps only suitable data to evaluate the differential reflectivity in snow

process_estimate_phidp0(procstatus, dscfg[, ...])

estimates the system differential phase offset at each ray

process_sun_hits(procstatus, dscfg[, radar_list])

monitoring of the radar using sun hits

process_selfconsistency_kdp_phidp(...[, ...])

Computes specific differential phase and differential phase in rain using the selfconsistency between Zdr, Zh and KDP

process_selfconsistency_bias(procstatus, dscfg)

Estimates the reflectivity bias by means of the selfconsistency algorithm by Gourley

process_selfconsistency_bias2(procstatus, dscfg)

Estimates the reflectivity bias by means of the selfconsistency algorithm by Gourley

process_time_avg_std(procstatus, dscfg[, ...])

computes the average and standard deviation of data.

process_occurrence(procstatus, dscfg[, ...])

computes the frequency of occurrence of data.

process_occurrence_period(procstatus, dscfg)

computes the frequency of occurrence over a long period of time by adding together shorter periods

process_monitoring(procstatus, dscfg[, ...])

computes monitoring statistics

process_gc_monitoring(procstatus, dscfg[, ...])

computes ground clutter monitoring statistics

process_time_avg(procstatus, dscfg[, radar_list])

computes the temporal mean of a field

process_weighted_time_avg(procstatus, dscfg)

computes the temporal mean of a field weighted by the reflectivity

process_time_avg_flag(procstatus, dscfg[, ...])

computes a flag field describing the conditions of the data used while averaging

process_time_stats(procstatus, dscfg[, ...])

computes the temporal statistics of a field

process_time_stats2(procstatus, dscfg[, ...])

computes the temporal mean of a field

process_colocated_gates(procstatus, dscfg[, ...])

Find colocated gates within two radars

process_intercomp(procstatus, dscfg[, ...])

intercomparison between two radars at co-located gates.

process_intercomp_time_avg(procstatus, dscfg)

intercomparison between the average reflectivity of two radars

process_fields_diff(procstatus, dscfg[, ...])

Computes the field difference between RADAR001 and radar002, i.e. RADAR001-RADAR002.

process_intercomp_fields(procstatus, dscfg)

intercomparison between two radars

Retrievals#

process_ccor(procstatus, dscfg[, radar_list])

Computes the Clutter Correction Ratio, i.e. the ratio between the signal without Doppler filtering and the signal with Doppler filtering.

process_signal_power(procstatus, dscfg[, ...])

Computes the signal power in dBm

process_rcs(procstatus, dscfg[, radar_list])

Computes the radar cross-section (assuming a point target) from radar reflectivity.

process_rcs_pr(procstatus, dscfg[, radar_list])

Computes the radar cross-section (assuming a point target) from radar reflectivity by first computing the received power and then the RCS from it.

process_radial_noise_hs(procstatus, dscfg[, ...])

Computes the radial noise from the signal power using the Hildebrand and Sekhon 1974 method

process_radial_noise_ivic(procstatus, dscfg)

Computes the radial noise from the signal power using the Ivic 2013 method

process_snr(procstatus, dscfg[, radar_list])

Computes SNR

process_l(procstatus, dscfg[, radar_list])

Computes L parameter (logarithmic cross-correlation ratio)

process_cdr(procstatus, dscfg[, radar_list])

Computes approximation of Circular Depolarization Ratio

process_refl_from_zdr(procstatus, dscfg[, ...])

Computes the vertical or horizontal reflectivity from ZDR and the reflectivity at the orthogonal polarization

process_rainrate(procstatus, dscfg[, radar_list])

Estimates rainfall rate from polarimetric moments

process_rainfall_accumulation(procstatus, dscfg)

Computes rainfall accumulation fields

process_vol_refl(procstatus, dscfg[, radar_list])

Computes the volumetric reflectivity eta in 10log10(cm^2 km^-3)

process_bird_density(procstatus, dscfg[, ...])

Computes the bird density from the volumetric reflectivity

process_vpr(procstatus, dscfg[, radar_list])

Computes the vertical profile of reflectivity using the Meteo-France operational algorithm

Doppler processing#

process_turbulence(procstatus, dscfg[, ...])

Computes turbulence from the Doppler spectrum width and reflectivity using the PyTDA package

process_dealias_fourdd(procstatus, dscfg[, ...])

Dealiases the Doppler velocity field using the 4DD technique from Curtis and Houze, 2001

process_dealias_region_based(procstatus, dscfg)

Dealiases the Doppler velocity field using a region based algorithm

process_dealias_unwrap_phase(procstatus, dscfg)

Dealiases the Doppler velocity field using multi-dimensional phase unwrapping

process_radial_velocity(procstatus, dscfg[, ...])

Estimates the radial velocity respect to the radar from the wind velocity

process_wind_vel(procstatus, dscfg[, radar_list])

Estimates the horizontal or vertical component of the wind from the radial velocity

process_windshear(procstatus, dscfg[, ...])

Estimates the wind shear from the wind velocity

process_windshear_lidar(procstatus, dscfg[, ...])

Estimates the wind shear from the wind velocity of lidar scans

process_vad(procstatus, dscfg[, radar_list])

Estimates vertical wind profile using the VAD (velocity Azimuth Display) technique

process_dda(procstatus, dscfg[, radar_list])

Estimates horizontal wind speed and direction with a multi-doppler approach This method uses the python package pyDDA

Time series functions#

process_point_measurement(procstatus, dscfg)

Obtains the radar data at a point location.

process_multiple_points(procstatus, dscfg[, ...])

Obtains the radar data at multiple points.

process_qvp(procstatus, dscfg[, radar_list])

Computes quasi vertical profiles, by averaging over height levels PPI data.

process_rqvp(procstatus, dscfg[, radar_list])

Computes range defined quasi vertical profiles, by averaging over height levels PPI data.

process_svp(procstatus, dscfg[, radar_list])

Computes slanted vertical profiles, by averaging over height levels PPI data.

process_evp(procstatus, dscfg[, radar_list])

Computes enhanced vertical profiles, by averaging over height levels PPI data.

process_time_height(procstatus, dscfg[, ...])

Produces time height radar objects at a point of interest defined by latitude and longitude.

process_ts_along_coord(procstatus, dscfg[, ...])

Produces time series along a particular antenna coordinate

Trajectory functions#

process_trajectory(procstatus, dscfg[, ...])

Return trajectory

process_traj_atplane(procstatus, dscfg[, ...])

Return time series according to trajectory

process_traj_antenna_pattern(procstatus, dscfg)

Process a new array of data volumes considering a plane trajectory.

process_traj_lightning(procstatus, dscfg[, ...])

Return time series according to lightning trajectory

process_traj_trt(procstatus, dscfg[, ...])

Processes data according to TRT trajectory

process_traj_trt_contour(procstatus, dscfg)

Gets the TRT cell contour corresponding to each radar volume

icon data#

process_icon(procstatus, dscfg[, radar_list])

Gets icon data and put it in radar coordinates

process_icon_lookup_table(procstatus, dscfg)

Gets icon data and put it in radar coordinates using look up tables computed or loaded when initializing

process_icon_coord(procstatus, dscfg[, ...])

Gets the icon indices corresponding to each icon coordinates

process_hzt(procstatus, dscfg[, radar_list])

Gets iso0 degree data in HZT format and put it in radar coordinates

process_hzt_lookup_table(procstatus, dscfg)

Gets HZT data and put it in radar coordinates using look up tables computed or loaded when initializing

process_hzt_coord(procstatus, dscfg[, ...])

Gets the HZT indices corresponding to each HZT coordinates

process_iso0_mf(procstatus, dscfg[, radar_list])

Gets iso0 degree data in text format and put it in radar coordinates.

process_iso0_grib(procstatus, dscfg[, ...])

Gets iso0 degree data in GRIB format and put it in radar coordinates.

process_icon_to_radar(procstatus, dscfg[, ...])

Gets icon data and put it in radar coordinates using look up tables

DEM data#

process_dem(procstatus, dscfg[, radar_list])

Gets DEM data and put it in radar coordinates

process_visibility(procstatus, dscfg[, ...])

Gets the visibility in percentage from the minimum visible elevation.

process_gecsx(procstatus, dscfg[, radar_list])

Computes ground clutter RCS, radar visibility and many others using the GECSX algorithmn translated from IDL into python

Functions

get_process_func(dataset_type, dsname)

Maps the dataset type into its processing function and data set format associated.

process_Doppler_velocity(procstatus, dscfg)

Compute the Doppler velocity from the spectral reflectivity

process_Doppler_velocity_iq(procstatus, dscfg)

Compute the Doppler velocity from the spectral reflectivity

process_Doppler_width(procstatus, dscfg[, ...])

Compute the Doppler spectrum width from the spectral reflectivity

process_Doppler_width_iq(procstatus, dscfg)

Compute the Doppler spectrum width from the spectral reflectivity

process_attenuation(procstatus, dscfg[, ...])

Computes specific attenuation and specific differential attenuation using the Z-Phi method and corrects reflectivity and differential reflectivity

process_azimuthal_average(procstatus, dscfg)

Averages radar data in azimuth obtaining and RHI as a result

process_bird_density(procstatus, dscfg[, ...])

Computes the bird density from the volumetric reflectivity

process_birds_id(procstatus, dscfg[, radar_list])

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Birds

process_ccor(procstatus, dscfg[, radar_list])

Computes the Clutter Correction Ratio, i.e. the ratio between the signal without Doppler filtering and the signal with Doppler filtering.

process_cdf(procstatus, dscfg[, radar_list])

Collects the fields necessary to compute the Cumulative Distribution Function

process_cdr(procstatus, dscfg[, radar_list])

Computes approximation of Circular Depolarization Ratio

process_centroids(procstatus, dscfg[, ...])

Computes centroids for the semi-supervised hydrometeor classification

process_clt_to_echo_id(procstatus, dscfg[, ...])

Converts clutter exit code from rad4alp into pyrad echo ID

process_colocated_gates(procstatus, dscfg[, ...])

Find colocated gates within two radars

process_correct_bias(procstatus, dscfg[, ...])

Corrects a bias on the data

process_correct_noise_rhohv(procstatus, dscfg)

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Precipitation

process_correct_phidp0(procstatus, dscfg[, ...])

corrects phidp of the system phase

process_dda(procstatus, dscfg[, radar_list])

Estimates horizontal wind speed and direction with a multi-doppler approach This method uses the python package pyDDA

process_dealias_fourdd(procstatus, dscfg[, ...])

Dealiases the Doppler velocity field using the 4DD technique from Curtis and Houze, 2001

process_dealias_region_based(procstatus, dscfg)

Dealiases the Doppler velocity field using a region based algorithm

process_dealias_unwrap_phase(procstatus, dscfg)

Dealiases the Doppler velocity field using multi-dimensional phase unwrapping

process_dem(procstatus, dscfg[, radar_list])

Gets DEM data and put it in radar coordinates

process_differential_phase(procstatus, dscfg)

Computes the differential phase from the spectral differential phase and the spectral reflectivity

process_differential_phase_iq(procstatus, dscfg)

Computes the differential phase from the horizontal and vertical IQ data

process_differential_reflectivity(...[, ...])

Computes differential reflectivity from the horizontal and vertical spectral reflectivity

process_differential_reflectivity_iq(...[, ...])

Computes differential reflectivity from the horizontal and vertical IQ data

process_echo_filter(procstatus, dscfg[, ...])

Masks all echo types that are not of the class specified in keyword echo_type

process_echo_id(procstatus, dscfg[, radar_list])

identifies echoes as 0: No data, 1: Noise, 2: Clutter, 3: Precipitation

process_estimate_phidp0(procstatus, dscfg[, ...])

estimates the system differential phase offset at each ray

process_evp(procstatus, dscfg[, radar_list])

Computes enhanced vertical profiles, by averaging over height levels PPI data.

process_fft(procstatus, dscfg[, radar_list])

Compute the Doppler spectra form the IQ data with a Fourier transform

process_fields_diff(procstatus, dscfg[, ...])

Computes the field difference between RADAR001 and radar002, i.e. RADAR001-RADAR002.

process_filter_0Doppler(procstatus, dscfg[, ...])

Function to filter the 0-Doppler line bin and neighbours of the Doppler spectra

process_filter_snr(procstatus, dscfg[, ...])

filters out low SNR echoes

process_filter_spectra_noise(procstatus, dscfg)

Filter the noise of the Doppler spectra by clipping any data below the noise level plus a margin

process_filter_srhohv(procstatus, dscfg[, ...])

Filter Doppler spectra as a function of spectral RhoHV

process_filter_vel_diff(procstatus, dscfg[, ...])

filters out range gates that could not be used for Doppler velocity estimation

process_filter_visibility(procstatus, dscfg)

filters out rays gates with low visibility and corrects the reflectivity

process_filter_vol2bird(procstatus, dscfg[, ...])

Masks all echo types that have been identified as non-biological by vol2bird

process_fixed_rng(procstatus, dscfg[, ...])

Obtains radar data at a fixed range

process_fixed_rng_span(procstatus, dscfg[, ...])

For each azimuth-elevation gets the data within a fixed range span and computes a user-defined statistic: mean, min, max, mode, median

process_gate_filter_vol2bird(procstatus, dscfg)

Adds filter on range gate values to the vol2bird filter

process_gatefilter(procstatus, dscfg[, ...])

filters out all available moments based on specified upper/lower bounds for moments based on the Py-ART gatefilter.

process_gc_monitoring(procstatus, dscfg[, ...])

computes ground clutter monitoring statistics

process_gecsx(procstatus, dscfg[, radar_list])

Computes ground clutter RCS, radar visibility and many others using the GECSX algorithmn translated from IDL into python

process_grid(procstatus, dscfg[, radar_list])

Puts the radar data in a regular grid

process_grid_fields_diff(procstatus, dscfg)

Computes grid field differences

process_grid_mask(procstatus, dscfg[, ...])

Mask data.

process_grid_multiple_points(procstatus, dscfg)

Obtains the grid data at a point location.

process_grid_point(procstatus, dscfg[, ...])

Obtains the grid data at a point location.

process_grid_rainfall_accumulation(...[, ...])

computes rainfall accumulation fields

process_grid_texture(procstatus, dscfg[, ...])

Computes the 2D texture of a gridded field

process_grid_time_stats(procstatus, dscfg[, ...])

computes the temporal statistics of a field

process_grid_time_stats2(procstatus, dscfg)

computes temporal statistics of a field

process_hydro_mf_to_echo_id(procstatus, dscfg)

Converts MF hydrometeor classification into pyrad echo ID

process_hydro_mf_to_hydro(procstatus, dscfg)

Converts the hydrometeor classification from Météo France to that of MeteoSwiss

process_hydroclass(procstatus, dscfg[, ...])

Classifies precipitation echoes

process_hzt(procstatus, dscfg[, radar_list])

Gets iso0 degree data in HZT format and put it in radar coordinates

process_hzt_coord(procstatus, dscfg[, ...])

Gets the HZT indices corresponding to each HZT coordinates

process_hzt_lookup_table(procstatus, dscfg)

Gets HZT data and put it in radar coordinates using look up tables computed or loaded when initializing

process_icon(procstatus, dscfg[, radar_list])

Gets icon data and put it in radar coordinates

process_icon_coord(procstatus, dscfg[, ...])

Gets the icon indices corresponding to each icon coordinates

process_icon_lookup_table(procstatus, dscfg)

Gets icon data and put it in radar coordinates using look up tables computed or loaded when initializing

process_icon_to_radar(procstatus, dscfg[, ...])

Gets icon data and put it in radar coordinates using look up tables

process_ifft(procstatus, dscfg[, radar_list])

Compute the Doppler spectrum width from the spectral reflectivity

process_intercomp(procstatus, dscfg[, ...])

intercomparison between two radars at co-located gates.

process_intercomp_fields(procstatus, dscfg)

intercomparison between two radars

process_intercomp_time_avg(procstatus, dscfg)

intercomparison between the average reflectivity of two radars

process_iso0_grib(procstatus, dscfg[, ...])

Gets iso0 degree data in GRIB format and put it in radar coordinates.

process_iso0_mf(procstatus, dscfg[, radar_list])

Gets iso0 degree data in text format and put it in radar coordinates.

process_kdp_leastsquare_double_window(...[, ...])

Computes specific differential phase using a piecewise least square method

process_kdp_leastsquare_single_window(...[, ...])

Computes specific differential phase using a piecewise least square method

process_keep_roi(procstatus, dscfg[, radar_list])

keep only data within a region of interest and mask anything else

process_l(procstatus, dscfg[, radar_list])

Computes L parameter (logarithmic cross-correlation ratio)

process_mean_phase_iq(procstatus, dscfg[, ...])

Computes the mean phase from the horizontal or vertical IQ data

process_melting_layer(procstatus, dscfg[, ...])

Detects the melting layer

process_monitoring(procstatus, dscfg[, ...])

computes monitoring statistics

process_moving_azimuthal_average(procstatus, ...)

Applies a moving azimuthal average to the radar data

process_multiple_points(procstatus, dscfg[, ...])

Obtains the radar data at multiple points.

process_noise_power(procstatus, dscfg[, ...])

Computes the noise power from the spectra

process_normalize_luminosity(procstatus, dscfg)

Normalize the data by the sinus of the sun elevation.

process_occurrence(procstatus, dscfg[, ...])

computes the frequency of occurrence of data.

process_occurrence_period(procstatus, dscfg)

computes the frequency of occurrence over a long period of time by adding together shorter periods

process_outlier_filter(procstatus, dscfg[, ...])

filters out gates which are outliers respect to the surrounding

process_phidp_kdp_Kalman(procstatus, dscfg)

Computes specific differential phase and differential phase using the Kalman filter as proposed by Schneebeli et al. The data is assumed to be clutter free and continous.

process_phidp_kdp_Maesaka(procstatus, dscfg)

Estimates PhiDP and KDP using the method by Maesaka.

process_phidp_kdp_Vulpiani(procstatus, dscfg)

Computes specific differential phase and differential phase using the method developed by Vulpiani et al. The data is assumed to be clutter free and monotonous.

process_phidp_kdp_lp(procstatus, dscfg[, ...])

Estimates PhiDP and KDP using a linear programming algorithm.

process_pixel_filter(procstatus, dscfg[, ...])

Masks all pixels that are not of the class specified in keyword pixel_type

process_point_measurement(procstatus, dscfg)

Obtains the radar data at a point location.

process_pol_variables(procstatus, dscfg[, ...])

Computes the polarimetric variables from the complex spectra

process_pol_variables_iq(procstatus, dscfg)

Computes the polarimetric variables from the IQ data

process_qvp(procstatus, dscfg[, radar_list])

Computes quasi vertical profiles, by averaging over height levels PPI data.

process_radar_resampling(procstatus, dscfg)

Resamples the radar data to mimic another radar with different geometry and antenna pattern

process_radial_noise_hs(procstatus, dscfg[, ...])

Computes the radial noise from the signal power using the Hildebrand and Sekhon 1974 method

process_radial_noise_ivic(procstatus, dscfg)

Computes the radial noise from the signal power using the Ivic 2013 method

process_radial_velocity(procstatus, dscfg[, ...])

Estimates the radial velocity respect to the radar from the wind velocity

process_rainfall_accumulation(procstatus, dscfg)

Computes rainfall accumulation fields

process_rainrate(procstatus, dscfg[, radar_list])

Estimates rainfall rate from polarimetric moments

process_raw(procstatus, dscfg[, radar_list])

Dummy function that returns the initial input data set

process_raw_grid(procstatus, dscfg[, radar_list])

Dummy function that returns the initial input data set

process_raw_iq(procstatus, dscfg[, radar_list])

Dummy function that returns the initial input data set

process_raw_spectra(procstatus, dscfg[, ...])

Dummy function that returns the initial input data set

process_rcs(procstatus, dscfg[, radar_list])

Computes the radar cross-section (assuming a point target) from radar reflectivity.

process_rcs_pr(procstatus, dscfg[, radar_list])

Computes the radar cross-section (assuming a point target) from radar reflectivity by first computing the received power and then the RCS from it.

process_refl_from_zdr(procstatus, dscfg[, ...])

Computes the vertical or horizontal reflectivity from ZDR and the reflectivity at the orthogonal polarization

process_reflectivity(procstatus, dscfg[, ...])

Computes reflectivity from the spectral reflectivity

process_reflectivity_iq(procstatus, dscfg[, ...])

Computes reflectivity from the IQ data

process_rhohv(procstatus, dscfg[, radar_list])

Computes RhoHV from the complex spectras

process_rhohv_iq(procstatus, dscfg[, radar_list])

Computes RhoHV from the horizontal and vertical IQ data

process_rhohv_rain(procstatus, dscfg[, ...])

Keeps only suitable data to evaluate the 80 percentile of RhoHV in rain

process_roi(procstatus, dscfg[, radar_list])

Obtains the radar data at a region of interest defined by a TRT file or by the user.

process_roi2(procstatus, dscfg[, radar_list])

Obtains the radar data at a region of interest defined by a TRT file or by the user.

process_rqvp(procstatus, dscfg[, radar_list])

Computes range defined quasi vertical profiles, by averaging over height levels PPI data.

process_save_radar(procstatus, dscfg[, ...])

Dummy function that allows to save the entire radar object

process_selfconsistency_bias(procstatus, dscfg)

Estimates the reflectivity bias by means of the selfconsistency algorithm by Gourley

process_selfconsistency_bias2(procstatus, dscfg)

Estimates the reflectivity bias by means of the selfconsistency algorithm by Gourley

process_selfconsistency_kdp_phidp(...[, ...])

Computes specific differential phase and differential phase in rain using the selfconsistency between Zdr, Zh and KDP

process_signal_power(procstatus, dscfg[, ...])

Computes the signal power in dBm

process_smooth_phidp_double_window(...[, ...])

corrects phidp of the system phase and smoothes it using one window

process_smooth_phidp_single_window(...[, ...])

corrects phidp of the system phase and smoothes it using one window

process_snr(procstatus, dscfg[, radar_list])

Computes SNR

process_spectra_ang_avg(procstatus, dscfg[, ...])

Function to average the spectra over the rays.

process_spectra_point(procstatus, dscfg[, ...])

Obtains the spectra or IQ data at a point location.

process_spectral_differential_phase(...[, ...])

Computes the spectral differential phase

process_spectral_differential_reflectivity(...)

Computes spectral differential reflectivity

process_spectral_noise(procstatus, dscfg[, ...])

Computes the spectral noise

process_spectral_phase(procstatus, dscfg[, ...])

Computes the spectral phase

process_spectral_power(procstatus, dscfg[, ...])

Computes the spectral power

process_spectral_reflectivity(procstatus, dscfg)

Computes spectral reflectivity

process_spectral_rhohv(procstatus, dscfg[, ...])

Computes the spectral RhoHV

process_st1_iq(procstatus, dscfg[, radar_list])

Computes the statistical test one lag fluctuation from the horizontal or vertical IQ data

process_st2_iq(procstatus, dscfg[, radar_list])

Computes the statistical test two lag fluctuation from the horizontal or vertical IQ data

process_sun_hits(procstatus, dscfg[, radar_list])

monitoring of the radar using sun hits

process_sunscan(procstatus, dscfg[, radar_list])

Processing of automatic sun scans for monitoring purposes of the radar system.

process_svp(procstatus, dscfg[, radar_list])

Computes slanted vertical profiles, by averaging over height levels PPI data.

process_time_avg(procstatus, dscfg[, radar_list])

computes the temporal mean of a field

process_time_avg_flag(procstatus, dscfg[, ...])

computes a flag field describing the conditions of the data used while averaging

process_time_avg_std(procstatus, dscfg[, ...])

computes the average and standard deviation of data.

process_time_height(procstatus, dscfg[, ...])

Produces time height radar objects at a point of interest defined by latitude and longitude.

process_time_stats(procstatus, dscfg[, ...])

computes the temporal statistics of a field

process_time_stats2(procstatus, dscfg[, ...])

computes the temporal mean of a field

process_traj_antenna_pattern(procstatus, dscfg)

Process a new array of data volumes considering a plane trajectory.

process_traj_atplane(procstatus, dscfg[, ...])

Return time series according to trajectory

process_traj_lightning(procstatus, dscfg[, ...])

Return time series according to lightning trajectory

process_traj_trt(procstatus, dscfg[, ...])

Processes data according to TRT trajectory

process_traj_trt_contour(procstatus, dscfg)

Gets the TRT cell contour corresponding to each radar volume

process_trajectory(procstatus, dscfg[, ...])

Return trajectory

process_ts_along_coord(procstatus, dscfg[, ...])

Produces time series along a particular antenna coordinate

process_turbulence(procstatus, dscfg[, ...])

Computes turbulence from the Doppler spectrum width and reflectivity using the PyTDA package

process_vad(procstatus, dscfg[, radar_list])

Estimates vertical wind profile using the VAD (velocity Azimuth Display) technique

process_visibility(procstatus, dscfg[, ...])

Gets the visibility in percentage from the minimum visible elevation.

process_vol_refl(procstatus, dscfg[, radar_list])

Computes the volumetric reflectivity eta in 10log10(cm^2 km^-3)

process_vol_to_grid(procstatus, dscfg[, ...])

Function to convert polar data into a Cartesian grid

process_vpr(procstatus, dscfg[, radar_list])

Computes the vertical profile of reflectivity using the Meteo-France operational algorithm

process_vstatus_to_echo_id(procstatus, dscfg)

Converts velocity status from lidar data into pyrad echo ID

process_wbn_iq(procstatus, dscfg[, radar_list])

Computes the wide band noise from the horizontal or vertical IQ data

process_weighted_time_avg(procstatus, dscfg)

computes the temporal mean of a field weighted by the reflectivity

process_wind_vel(procstatus, dscfg[, radar_list])

Estimates the horizontal or vertical component of the wind from the radial velocity

process_windshear(procstatus, dscfg[, ...])

Estimates the wind shear from the wind velocity

process_windshear_lidar(procstatus, dscfg[, ...])

Estimates the wind shear from the wind velocity of lidar scans

process_zdr_column(procstatus, dscfg[, ...])

Detects ZDR columns

process_zdr_precip(procstatus, dscfg[, ...])

Keeps only suitable data to evaluate the differential reflectivity in moderate rain or precipitation (for vertical scans)

process_zdr_snow(procstatus, dscfg[, radar_list])

Keeps only suitable data to evaluate the differential reflectivity in snow