pyrad.proc.process_evp#
- pyrad.proc.process_evp(procstatus, dscfg, radar_list=None)[source]#
Computes enhanced vertical profiles, by averaging over height levels PPI data.
- Parameters:
procstatus (int) – Processing status: 0 initializing, 1 processing volume, 2 post-processing
dscfg (dictionary of dictionaries) –
data set configuration. Accepted Configuration Keywords:
datatype : string. Dataset keyword The data type where we want to extract the point measurement, can be any datatype supported by pyrad and available in the data lat, lon : float latitude and longitude of the point of interest [deg] latlon_tol : float tolerance in latitude and longitude in deg. Default 0.0005 delta_rng, delta_azi : float maximum range distance [m] and azimuth distance [degree] from the central point of the evp containing data to average. Default 5000. and 10. hmax : float The maximum height to plot [m]. Default 10000. hres : float The height resolution [m]. Default 250. avg_type : str The type of averaging to perform. Can be either "mean" or "median" Default "mean" nvalid_min : int Minimum number of valid points to consider the data valid when performing the averaging. Default 1 interp_kind : str type of interpolation when projecting to vertical grid: 'none', or 'nearest', etc. Default 'none'. 'none' will select from all data points within the regular grid height bin the closest to the center of the bin. 'nearest' will select the closest data point to the center of the height bin regardless if it is within the height bin or not. Data points can be masked values If another type of interpolation is selected masked values will be eliminated from the data points before the interpolation
radar_list (list of Radar objects) – Optional. list of radar objects
- Returns:
new_dataset (dict) – dictionary containing the EVP and a keyword stating whether the processing has finished or not.
ind_rad (int) – radar index
Reference
———
Kaltenboeck R., Ryzhkov A. 2016 (A freezing rain storm explored with a)
C-band polarimetric weather radar using the QVP methodology.
Meteorologische Zeitschrift vol. 26 pp 207-222