pyrad.proc.process_turbulence#

pyrad.proc.process_turbulence(procstatus, dscfg, radar_list=None)[source]#

Computes turbulence from the Doppler spectrum width and reflectivity using the PyTDA package

Parameters:
  • procstatus (int) – Processing status: 0 initializing, 1 processing volume, 2 post-processing

  • dscfg (dictionary of dictionaries) –

    data set configuration. Accepted Configuration Keywords:

    datatype : string. Dataset keyword
        The input data type, must contain,
        "dBuZ" or "dBZ" or "dBZc" or "dBuZv" or "dBZv" or "dBZvc" or "CNRc", and,
        "W" or "Wv" or "Wu" or "Wvu" or "WD" or "WDc"
    radius : float. Dataset keyword
        Search radius for calculating Eddy Dissipation Rate (EDR).
        Default 2
    split_cut : Bool. Dataset keyword
        Set to True for split-cut volumes. Default False
    max_split_cut : Int. Dataset keyword
        Total number of tilts that are affected by split cuts. Only
        relevant if split_cut=True. Default 2
    xran, yran : float array. Dataset keyword
        Spatial range in X,Y to consider. Default [-100, 100] for both
        X and Y
    use_ntda : Bool. Dataset keyword
        Wether to use NCAR Turbulence Detection Algorithm (NTDA). Default
        True
    beamwidth : Float. Dataset keyword
        Radar beamwidth. Default None. If None it will be obtained from
        the radar object metadata. If cannot be obtained defaults to 1
        deg.
    compute_gate_pos : Bool. Dataset keyword
        If True the gate position is going to be computed in PyTDA.
        Otherwise the position from the radar object is used. Default
        False
    verbose : Bool. Dataset keyword
        True for verbose output. Default False
    
  • radar_list (list of Radar objects) – Optional. list of radar objects

Returns:

  • new_dataset (dict) – dictionary containing the output field “EDR”

  • ind_rad (int) – radar index