pyrad.proc.process_turbulence#
- pyrad.proc.process_turbulence(procstatus, dscfg, radar_list=None)[source]#
Computes turbulence from the Doppler spectrum width and reflectivity using the PyTDA package
- Parameters:
procstatus (int) – Processing status: 0 initializing, 1 processing volume, 2 post-processing
dscfg (dictionary of dictionaries) –
data set configuration. Accepted Configuration Keywords:
datatype : string. Dataset keyword The input data type, must contain, "dBuZ" or "dBZ" or "dBZc" or "dBuZv" or "dBZv" or "dBZvc" or "CNRc", and, "W" or "Wv" or "Wu" or "Wvu" or "WD" or "WDc" radius : float. Dataset keyword Search radius for calculating Eddy Dissipation Rate (EDR). Default 2 split_cut : Bool. Dataset keyword Set to True for split-cut volumes. Default False max_split_cut : Int. Dataset keyword Total number of tilts that are affected by split cuts. Only relevant if split_cut=True. Default 2 xran, yran : float array. Dataset keyword Spatial range in X,Y to consider. Default [-100, 100] for both X and Y use_ntda : Bool. Dataset keyword Wether to use NCAR Turbulence Detection Algorithm (NTDA). Default True beamwidth : Float. Dataset keyword Radar beamwidth. Default None. If None it will be obtained from the radar object metadata. If cannot be obtained defaults to 1 deg. compute_gate_pos : Bool. Dataset keyword If True the gate position is going to be computed in PyTDA. Otherwise the position from the radar object is used. Default False verbose : Bool. Dataset keyword True for verbose output. Default False
radar_list (list of Radar objects) – Optional. list of radar objects
- Returns:
new_dataset (dict) – dictionary containing the output field “EDR”
ind_rad (int) – radar index