pyrad.proc.process_qvp#
- pyrad.proc.process_qvp(procstatus, dscfg, radar_list=None)[source]#
Computes quasi vertical profiles, by averaging over height levels PPI data.
- Parameters:
procstatus (int) – Processing status: 0 initializing, 1 processing volume, 2 post-processing
dscfg (dictionary of dictionaries) –
data set configuration. Accepted Configuration Keywords:
datatype : string. Dataset keyword The data type where we want to extract the point measurement, can be any datatype supported by pyrad and available in the data angle : int or float If the radar object contains a PPI volume, the sweep number to use, if it contains an RHI volume the elevation angle. Default 0. ang_tol : float If the radar object contains an RHI volume, the tolerance in the elevation angle for the conversion into PPI hmax : float The maximum height to plot [m]. Default 10000. hres : float The height resolution [m]. Default 50 avg_type : str The type of averaging to perform. Can be either "mean" or "median" Default "mean" nvalid_min : int Minimum number of valid points to accept average. Default 30. interp_kind : str type of interpolation when projecting to vertical grid: 'none', or 'nearest', etc. Default 'none' 'none' will select from all data points within the regular grid height bin the closest to the center of the bin. 'nearest' will select the closest data point to the center of the height bin regardless if it is within the height bin or not. Data points can be masked values If another type of interpolation is selected masked values will be eliminated from the data points before the interpolation
radar_list (list of Radar objects) – Optional. list of radar objects
- Returns:
new_dataset (dict) – dictionary containing the QVP and a keyword stating whether the processing has finished or not.
ind_rad (int) – radar index
Reference
———
Ryzhkov A., Zhang P., Reeves H., Kumjian M., Tschallener T., Trömel S.,
Simmer C. 2016 (Quasi-Vertical Profiles: A New Way to Look at Polarimetric)
Radar Data. JTECH vol. 33 pp 551-562